Aufgabe 11.1.

Zeigen Sie mit Hilfe der ε-δ-Sprache, dass die Funktion \sqrt{x} , $x \ge 0$ stetig bei x_0 =5 ist.

Lösung:

Es muss gelten:

$$\forall \varepsilon > 0 : \exists \delta > 0 : |x - x_0| < \delta \ dann \ |f(x) - f(x_0)| < \varepsilon$$

eingesetzt

$$\left|\sqrt{x} - \sqrt{x_0}\right| = \frac{\left|\sqrt{x} - \sqrt{x_0}\right| \sqrt{x} + \sqrt{x_0}}{\sqrt{x} + \sqrt{x_0}}$$

$$= \frac{\left|x - x_0\right|}{\sqrt{x} + \sqrt{x_0}}$$

$$< \frac{\left|x - x_0\right|}{\sqrt{x_0}} = \frac{1}{\sqrt{5}} \left|x - 5\right| < \varepsilon$$

sobald

$$\delta = \sqrt{5}\varepsilon > |x - x_0| = |x - \sqrt{5}|$$

Für beliebig große/kleine ϵ lässt sich demzufolge immer ein δ angeben.

Aufgabe 11.2.

Untersuchen Sie die folgenden Funktionen auf Stetigkeit:

Aufgabe 11.2.1.

$$f(x) = |x|, dom(f) = R$$

Lösung:

$$|f(x)-f(x_0)| = ||x|-|x_0||$$

Diese Funktion ist in R stetig.

Aufgabe 11.2.2.

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & x \neq 2, a \in R \\ a, & x = 2 \end{cases}$$

Lösung:

Für $x\neq 2$ ist die Funktion stetig. An der Stelle 2 ist sie es, wenn $\lim_{x\to 2} f(x) = a$. Durch Umformen entsteht rechts- und linksseitig der Stelle 2:

$$f(x) = \frac{x^2 - 4}{x - 2} = \frac{(x + 2)(x - 2)}{x - 2} = x + 2$$

Nur für a=2+2=4 ist die Funktion an der Stelle 2 stetig. Für alle anderen a ist sie unstetig.

Aufgabe 11.2.3.

$$f(x) = \begin{cases} \left| \frac{\sin x}{x} \right|, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

Lösung:

Die Funktion $\left| \frac{\sin x}{x} \right|$ ist in R\{0} stetig und ihr Grenzwert an der Stelle 0 ist:

$$\lim_{x \to 0} \left| \frac{\sin x}{x} \right| = \left| \frac{\cos 0}{1} \right| = 1$$

Aufgrund dieser Tatsache ist f(x) stetig.

Aufgabe 11.2.4.

$$f(x) = \begin{cases} \frac{\sin x}{|x|}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

Lösung:

$$\lim_{x \to 0^{-}} \frac{\sin x}{|x|} = \lim_{x \to 0^{-}} -\frac{\sin x}{x} = -1 \text{ aber}$$

$$\lim_{x \to 0+} \frac{\sin x}{|x|} = \lim_{x \to 0+} \frac{\sin x}{x} = +1.$$

Da sich an der Stelle 0 der links- und der rechtsseitige Grenzwert unterscheiden, ist f(x) unstetig.

Aufgabe 11.2.5.

$$f(x) = \begin{cases} \sin\frac{1}{x}, & x \neq 0 \\ a, & x = 0 \end{cases}, a \in R$$

Lösung:

 $\lim_{x\to 0} \sin \frac{1}{x}$ existiert nicht, da man für jede Zahl $c\in[-1,+1]$ eine Nullfolge bilden kann mit der

Eigenschaft $\sin \frac{1}{y_n} \to c$.

Begründung: Setzt man

$$\alpha = \arcsin c$$

$$y_n = \frac{1}{\alpha + 2\pi n}$$
 für n=1,2,...

so ist

$$\sin\frac{1}{y_n} = \sin(\alpha + 2\pi n) = \sin\alpha = c.$$

Da sich an der Stelle 0 kein Grenzwert ermitteln lässt, so ist f(x) dort auch nicht stetig.

Aufgabe 11.3.

Finden Sie die Unstetigkeitsstellen der folgenden Funktionen:

Aufgabe 11.3.1.

$$f(x) = \frac{x}{(1+x)^2}, x \in R$$

Lösung:

An der Stelle-1 ist f nicht definiert und der Grenzwert ∞ , sie ist dort nicht stetig.

Aufgabe 11.3.2.

$$f(x) = \frac{1+x}{1+x^3}, x \in R$$

Lösung:

Zwar ist f bei –1 nicht definiert, der Grenzwert beträgt jedoch nach de l'Hospital:

 $\lim_{x \to -1} \frac{1+x}{1+x^3} = \lim_{x \to -1} \frac{1}{3x^2} = \frac{1}{3}$. Da dies der links- und rechtsseitige Grenzwert ist, ist die Funktion an dieser Stelle stetig.

Aufgabe 11.3.3.

$$f(x) = \arctan \frac{1}{x}, x \in R$$

Lösung:

An der Stelle 0 ist f nicht definiert. Der linksseitige Grenzwert ist

 $\lim_{x\to 0^-} \arctan\frac{1}{x} = \lim_{x\to -\infty} \arctan x = -\frac{\pi}{2}, \text{ der rechtsseitige } \lim_{x\to 0^+} \arctan\frac{1}{x} = \lim_{x\to +\infty} \arctan x = +\frac{\pi}{2}.$ Dieser Unterschied zeigt, dass f nicht stetig sein kann.

Aufgabe 11.3.4.

$$f(x) = \frac{x^2 - 1}{x^3 - 3x + 1}, x \in R$$

Lösung:

Der Nenner der Funktion ist 0 an den drei Stellen -1,879, +0,347 und +1,532 (auf 3 Nachkommastellen gerundet), deshalb ist f dort nicht definiert. Der linksseitige Grenzwert ist jeweils $-\infty$, der rechtsseitige $+\infty$, d.h. deshalb ist f nicht stetig.

Aufgabe 11.4.

Es sei f, dom(f) = R eine stetige Funktion. Zeigen Sie, dass auch F(x) := |f(x)|, dom(F) = R eine stetige Funktion ist.

Lösung:

Die gegebene Stetigkeit von f bedingt, dass für jedes $\varepsilon > 0$ es ein $\delta > |x - x_0|$ gibt, so dass auch $\varepsilon > |f(x) - f(x_0)|$ gilt.

Aus der Beziehung
$$\left|f(x)-f(x_0)\right|\geq \left\|f(x)\right|-\left|f(x_0)\right|$$
 folgt $\left\|f(x)\right|-\left|f(x_0)\right|=\left|F(x)-F(x_0)\right|$ und daraus $\left|f(x)-f(x_0)\right|\geq \left|F(x)-F(x_0)\right|$
$$\varepsilon\geq \left|F(x)-F(x_0)\right|$$

Dies zeigt, dass auch F(x) eine stetige Funktion ist.

Aufgabe 11.5.

Entscheiden Sie, ob die folgenden Funktionen gleichmäßig stetig sind:

Aufgabe 11.5.1.

$$f(x) = \frac{x}{4 - x^2}, dom(f) = [-1,1]$$

Lösung:

Die Funktion ist stetig im Definitionsbereich, da sie keinerlei Sprünge etc. aufweist. Die gleichmäßige Stetigkeit folgt daraus, dass sie sowohl stetig, als auch ihr Definitionsbereich abgeschlossen und beschränkt ist.

Aufgabe 11.5.2.

$$f(x) = \ln x, dom(f) = (0,1)$$

Lösung: (der Referenzlösung entnommen)

Die Funktion ist nicht gleichmäßig stetig.

Wenn f gleichmäßig stetig wäre, so müsste für alle $x, y \in (0,1)$ die Aussage $|f(x) - f(y)| < \varepsilon$ aus $|x - y| < \delta$ folgen. Für $x_n = \frac{1}{n} + \frac{\delta}{2}$ und $y_n = \frac{1}{n}$ (n = 1, 2, ...), die als Vertreter aus dem Intervall genommen wurden, müssten sich die Behauptungen validieren lassen. Das ist jedoch nicht möglich.

Zwar gilt $|x_n - y_n| = \left| \frac{1}{n} + \frac{\delta}{2} - \frac{1}{n} \right| = \frac{\delta}{2} < \delta$, die Schlußfolgerung lautet aber:

$$|f(x_n) - f(y_n)| = |\ln x_n - \ln y_n| = \ln \frac{x_n}{y_n} < \varepsilon$$

Letzteres ergibt:

$$\frac{x_n}{y_n} < e^{\varepsilon}$$

$$x_n < e^{\varepsilon} y_n$$

$$x_n - y_n < e^{\varepsilon} y_n - y_n$$

$$x_n - y_n < (e^{\varepsilon} - 1)y_n$$

$$\frac{\delta}{2} < \frac{e^{\varepsilon} - 1}{n}$$

$$\delta < \frac{2(e^{\varepsilon} - 1)}{n}$$

Für große n ist dann aber $\delta o 0$, was der Voraussetzung $\delta > 0$ widerspricht.

Aufgabe 11.5.3.

$$f(x) = \frac{\sin x}{x}, dom(f) = (0, \pi)$$

Lösung:

Die Funktion ist stetig in ihrem Definitionsbereich, sogar in $dom(f)_2 = [0,\pi]$. Dieser erweiterte Definitionsbereich ist abgeschlossen und beschränkt, deshalb ist dort f gleichmäßig stetig. Wenn sie aber in diesem Intervall diese Eigenschaft hat, so hat sie sie auch in jedem Teilintervall, also auch in $dom(f) = (0,\pi)$, d.h. f ist im gegebenen Definitionsbereich gleichmäßig stetig.

Aufgabe 11.5.4.

$$f(x) = e^{x} \cos \frac{1}{x}, dom(f) = (0,1)$$

Lösung: (der Referenzlösung entnommen)

Die Funktion ist nicht gleichmäßig stetig.

Für
$$x_n = \frac{1}{n\pi}$$
 und $n = 1, 2, \dots$ gilt:

$$f(x_n) - f(x_{n+1}) = e^{\frac{1}{n\pi}} \cos n\pi - e^{\frac{1}{(n+1)\pi}} \cos(n+1)\pi$$

$$= e^{\frac{1}{n\pi}} (-1)^n - e^{\frac{1}{(n+1)\pi}} (-1)^{n+1}$$

$$= e^{\frac{1}{n\pi}} (-1)^n + e^{\frac{1}{(n+1)\pi}} (-1)^n$$

$$= (-1)^n \left(e^{\frac{1}{n\pi}} + e^{\frac{1}{(n+1)\pi}} \right)$$

Weiter:

$$|f(x_n) - f(x_{n+1})| = \left| (-1)^n \left(e^{\frac{1}{n\pi}} + e^{\frac{1}{(n+1)\pi}} \right) \right|$$
$$= e^{\frac{1}{n\pi}} + e^{\frac{1}{(n+1)\pi}}$$

Da stets $e^a > 1$ für a > 0 kann man abschätzen, dass $e^{\frac{1}{n\pi}} + e^{\frac{1}{(n+1)\pi}} > 2$.

Wählt man nun $0<\varepsilon<2$, so kann man für hinreichend große n die Gleichung $\left|x_{n}-x_{n+1}\right|<\delta$

finden, für die man aber die Bedingung $0 < \varepsilon < 2$ nicht erfüllen kann.

Die Annahme führte zum Widerspruch, die Funktion ist damit nicht gleichmäßig stetig.

Aufgabe 11.5.5.

$$f(x) = \sqrt{x}, dom(f) = \{x \in R : x \ge 0\}$$

Lösung:

Die Funktion ist gleichmäßig stetig.

$$|f(x_1) - f(a)| = |\sqrt{x_1} - \sqrt{a}|$$

$$= \frac{|\sqrt{x_1} - \sqrt{a}||\sqrt{x_1} + \sqrt{a}|}{|\sqrt{x_1} + \sqrt{a}|}$$

$$= \frac{|x_1 - a|}{|\sqrt{x_1} + \sqrt{a}|}$$

$$\frac{|x_1 - a|}{|\sqrt{x_1} + \sqrt{a}|} < \varepsilon$$

$$|x_1 - a| < \varepsilon |\sqrt{x_1} + \sqrt{a}|$$

Für $|x_1 - a| < \delta$ folgt, dass für $\delta = \varepsilon \left| \sqrt{x_1} + \sqrt{a} \right|$ diese Bedingung sich immer erfüllen lässt, d.h. f somit gleichmäßig stetig ist.