Die durch das Wasserfallmodell beschriebene Vorgehensweise ist nur dann gut geeignet, wenn man am Anfang des Projektes sehr genau weiß, was eigentlich zu entwickeln ist, da falsch getroffene Entscheidungen nur mit erhöhtem Aufwand rückgängig zu machen sind.

Die Sequentialität der Vorgehensweise birgt das Risiko, nicht damit umgehen zu können, dass in der Praxis im Laufe eines Projektes aufgrund des erweiterten Wissensstandes aller Beteiligten neue Anforderungen auftauchen, die wiederum in die frühen Phasen (z.B. System-/Software-Anforderungen, Analyse, ...) einfließen müssen, was im Wasserfallmodell zu starken Problemen führt.

Heutzutage will man dem Auftraggeber in bestimmten Intervallen (z.B. halbjährlich) lauffähige Teilprodukte präsentieren, sodass die Entwicklung in mehreren Stufen erfolgen muss. Ausgehend von einem Produktkern, der die Mussanforderungen enthält (Nullversion), kann man Erfahrungen sammeln, um genauer die zusätzlichen Anforderungen zu erforschen, die in den nächsten Versionen dann zu implementieren sind. Die Softwareentwicklung stellt damit mehr einen andauernden Prozess, der eventuell mehrere Jahre dauern kann, dar, der immer wieder lauffähige Produkte hervorbringt. Trotzdem bleibt er gut steuerbar, da die einzelnen Arbeitsschritte eine überschaubare Größe haben.

Der größte Nachteil ist, dass wenn die Nullversion bereits wesentliche Architekturschwächen aufweisen sollte, diese später nur schwer zu korrigieren sind. Sowohl Inflexibilitäten, was die freie evolutionäre Entwicklung angeht, als auch schlicht übersehene Kernanforderungen behindern den Einsatz dieses Prozessmodelles.

Aufgabe 2

Als Metamodell integriert das Spiralmodell andere Prozessmodelle und legt sich dabei nicht für die gesamte Entwicklung fest, erlaubt also Wechsel, um so stets eine möglichst optimale Vorgehensweise zu erlauben. Es wird versucht, alle Teilprodukte und Verfeinerungsebenen in 4 zyklische Schritte zu unterteilen. Deren wesentliche Aufgabe steht darin, dass die Suche nach Alternativen und der Evaluierung zu einer Abwägung der einzelnen Risiken führt. Je nach Bereitschaft des Auftraggebers sind so für identische Aufgabenstellungen verschiedene Lösungswege möglich.

Problematisch ist die heutzutage noch unzulänglich geklärte Frage der korrekten Identifizierung und Einschätzung von Risiken.

Es tauchen 3 Kategorien auf:

Kategorie	Abkürzung	Beschreibung
Funktion	LF	Kernfunktionen des Produktes
Daten	LD	zu speichernde Informationen
Leistung	LL	genauere Spezifikation der Anforderungen an eine Funktion

Die Nummerierung entspricht den Indizes aus der Aufgabenstellung.

Nr.	Kategorie	Beschreibung			
1	LF	Der Automat ermöglicht die Bezahlung mit Münzen			
2	LF	Die Art des Getränkes (Kaffee, Limonade u.ä.) kann über die Tastatur gewählt werden			
3	LL	Die Rückgabe des Geldes darf erst nach Beendigung der Abfüllung erfolgen			
4	LF	Der Automat muss komfortabel an die jeweiligen länderspezifischen Gegebenheiten (z.B.			
		Währung) anpassbar sein			
5	LF	Die Art des Getränkezusatzes (Zucker, Milch u.ä.) kann über eine Tastatur gewählt werden			
6	LL	Es müssen mindestens 3 verschiedene Getränkezusätze zur Verfügung gestellt werden			
7	LF	Der aktuelle Betriebszustand muss dem Benutzer signalisiert werden			
8	LF	Die Getränke werden in einem Becher abgefüllt			
9	LF	Die Becherausgabe kann unterdrückt werden, um eigene Tassen benutzen zu können			
10	LL	Es müssen mindestens 10.000 Getränke pro Tag ausgegeben werden können			
11	LL	Die Korrektheit der Münzen ist zu prüfen			
12	LL	Es müssen mindestens ?? verschiedene Getränke zur Verfügung gestellt werden			
13	LF	Der Automat wechselt bei Überbezahlung			
14	LF	Die Belegung der einzelnen Wahl-Tasten kann frei vorgenommen werden			
15	LF	Der Automat signalisiert das Ende der Abfüllung			
16	LD	Die Abgabemengen pro Tag sind zu speichern			
17	LD	Ausfälle sind zu protokollieren			
18	LL	Die Abfüllung muss spätestens ca. 4 Sekunden nach Betätigung der Auswahl erfolgen. Bei			
		warmen Getränken muss spätestens ca. 20 Sekunden nach Betätigung der Auswahl die			
		Abfüllung erfolgen			
19	LF	Der Automat signalisiert leere Zustände			

Der Mensch kommt zwar relativ lange ohne Nahrung aus, jedoch schon nach wenigen Tagen ist fehlende Flüssigkeitszufuhr tödlich. Dieser Sachverhalt macht die essentielle Bedeutung von Getränkeautomaten für die menschliche Rasse deutlich. In der Praxis erweisen sich die verschiedenen Typen jedoch als breitgestreute Vielfalt, die von teuflisch widerspenstig bis abgöttisch ergonomisch reicht. Um hier zukunftsweisende Standards zu setzen, sind die Qualitätsanforderungen das A und O, da die eigentliche Leistung (Auslieferung von Getränken gegen Bezahlung) weitgehend gleich in der breiten Masse ist.

Portierbarkeit ist für einen Getränkeautomaten eher nebensächlich, da es in der modernen IT-Branche sowohl hardware- als auch compilerseitig ISO-Standards gibt. Ich halte aufgrund der großen Verbreitung, der guten Verfügbarkeit von hochoptimierenden Compilern und einfach genialen Sprachkonstrukte C++ für besonders geeignet, Java scheint mir aufgrund noch fehlender Chips in der Konstruktion zu teuer zu sein.

Die Benutzbarkeit muss drei wesentliche Punkte erfüllen:

- 1. Eine ansprechende Oberfläche muss modernen GUIs ähneln. Als Eingabetechnik ist z.B. ein Touchscreen denkbar.
- 2. Gängige Standards bei der Verwendung von Eingabeelemente (Menüs, Controls etc.) sind zu beachten. Jeder sollte intuitiv die Bedeutung einzelner Symbole erahnen können. Randgruppen (Rentner, Kinder, Frauen) dürfen nicht außer acht gelassen werden. Für Notfälle ist eine kurze Bedienungsanleitung deutlich sichtbar anzubringen.
- 3. Erfahrene Nutzer müssen schnell ein Ergebnis erhalten, d.h. lange Bildschirmaufbauzeiten sind zu vermeiden, ebenso sollte das Anzeigelayout auf möglichst kurze Wege bei der Auswahl gängiger Getränke achten.

Der Begriff Effizienz ist in vielerlei Hinsicht deutbar. Zeit ist eines der wichtigsten und teuersten Güter unserer Epoche. Aus diesem Grunde müssen sowohl die Auswahl (siehe Benutzbarkeit) als auch die Bereitstellung des Produktes möglichst schnell erfolgen. Fehler sind umfassend abzufangen und deutlich sichtbar zu vermerken. Die notwendigen Korrekturen sollten sich auf ein Mindestmaß beschränken, wobei eine gewisse Grundintelligenz des Automaten zu erwarten ist (Speicherung von gültigen Einstellungen usw.). Natürlich sollte sehr sparsam mit den zur Herstellung notwendigen Ressourcen umgegangen werden, gleiches gilt für Verpackungsmaterialen im laufenden Betrieb und der Wiederverwertbarkeit von Abfallprodukten.

Die Wartbarkeit spielt auch eine nicht unerheblich Rolle. Als wesentliche Punkte sind hier

- einfache Wiederauffüllung/Austausch von Getränken und Wechselgeld
- Protokollierung von Verkauf/Fehlern
- Verwendung von Standardbauteilen (große Hilfe im Reparaturfall)

Sollte man alle diese Punkte in einer Tabelle wichten, so sieht mein Standpunkt folgendermaßen aus:

Qualitätskriterium	sehr gut	gut	normal	nicht relevant
Portierbarkeit				
Benutzbarkeit				
Effizienz				
Wartbarkeit				

Statistische Modelle – wie Aufwandsschätzungen – beruhen auf Erfahrungen, die in der Vergangenheit gemacht wurden. Deren Aussagekraft für zukünftige Entwicklungen kann enorme Schwankungen aufweisen, da die Umwelt sich stets verändert. Dies beinhaltet Fluktuations- und Weiterentwicklungsprozesse im Mitarbeiterstamm sowie Wechsel in der Aufgabenstellung. Besonders schlecht sieht es aus, wenn die Datenbasis nicht eigenen Messungen entstammt, sondern in Fremdinstitutionen erstellt wurde.

Wahrscheinlich die wichtigste Voraussetzung für eine vernünftige Datenbasis ist eine regelmäßige und gewissenhafte Aktualisierung unter Einfluss möglichst vieler Faktoren. Weiterhin ist eine anfängliche eingeschlagene Meßmethode konsequent fortzuführen. Leider ist dieser Arbeitsaufwand nicht immer vom Arbeitgeber finanzierbar, auch fällt es schwer, eine saubere Trennung zwischen "notwendig" und "überflüssig" zu finden.

Einige der Einflussfaktoren lassen sich nur schwer oder gar nicht in Zahlen fassen und können daher nicht in die Datenbasis eingehen. Mir fallen dazu Stichworte wie "Erfahrung" und "Motivation" ein. Ihre Schätzung ist zwar möglich, verfälscht eventuell das Resultat aber erheblich.

Erst mittelgroße bis große Projekte erlauben detaillierte Messungen von Faktoren ohne Messunsicherheiten. Daher sind alle Schätzmethoden für kleine Projekte in der Regel ungeeignet, eine Erfassung von Daten fällt oft sehr schwer, da der Verwaltungsaufwand in einem schlechten Verhältnis zu den gewonnenen Erfahrungen steht. In solchen Fällen sind instinktive Vorhersagen aufgrund subjektiver Erfahrungswerte angebrachter.

Zuerst ordne ich die einzelnen Aufgaben den Kategorien zu und nehme eine Gewichtung vor:

Beschreibung	Kategorie	Klassifizierung
Der Automat ermöglicht die Bezahlung mit Münzen	Eingabedaten	mittel
Die Art des Getränkes (Kaffee, Limonade u.ä.) kann über die	Eingabedaten	mittel
Tastatur gewählt werden		
Die Rückgabe des Geldes darf erst nach Beendigung der Abfüllung	Ausgaben	einfach
erfolgen		
Der Automat muss komfortabel an die jeweiligen	Referenzdaten	komplex
länderspezifischen Gegebenheiten (z.B. Währung) anpassbar sein		
Die Art des Getränkezusatzes (Zucker, Milch u.ä.) kann über eine	Eingabedaten	einfach
Tastatur gewählt werden		
Es müssen mindestens 3 verschiedene Getränkezusätze zur	Referenzdaten	mittel
Verfügung gestellt werden		
Der aktuelle Betriebszustand muss dem Benutzer signalisiert	Ausgaben	mittel
werden		
Die Getränke werden in einem Becher abgefüllt	Ausgaben	einfach
Die Becherausgabe kann unterdrückt werden, um eigene Tassen	Abfragen	einfach
benutzen zu können		
Es müssen mindestens 10.000 Getränke pro Tag ausgegeben	Datenbestände	mittel
werden können		
Die Korrektheit der Münzen ist zu prüfen	Abfragen	komplex
Es müssen mindestens ?? verschiedene Getränke zur Verfügung	Referenzdaten	mittel
gestellt werden		
Der Automat wechselt bei Überbezahlung	Abfragen	mittel
Die Belegung der einzelnen Wahl-Tasten kann frei vorgenommen	Datenbestände	mittel
werden		
Der Automat signalisiert das Ende der Abfüllung	Ausgaben	einfach
Die Abgabemengen pro Tag sind zu speichern	Datenbestände	komplex
Ausfälle sind zu protokollieren	Datenbestände	komplex
Die Abfüllung muss spätestens ca. 4 Sekunden nach Betätigung der	Ausgaben	mittel
Auswahl erfolgen. Bei warmen Getränken muss spätestens ca. 20		
Sekunden nach Betätigung der Auswahl die Abfüllung erfolgen		
Der Automat signalisiert leere Zustände	Ausgaben	einfach

Das ausgefüllte Formular zur Ermittlung der bewerteten Functions Points ergibt dann folgendes Bild:

Kategorie	Anzahl	Klassifizierung	Gewichtung	Zeilensumme
Eingabedaten	1	einfach	.3	3
	2	mittel	.4	8
	-	komplex	.6	-
Abfragen	1	einfach	.3	3
	1	mittel	·4	4
	1	komplex	·6	6
Ausgaben	4	einfach	·4	16
	2	mittel	.5	10
	-	komplex	·7	-
Datenbestände	-	einfach	·7	-
	2	mittel	·10	20
	2	komplex	·15	30
Referenzdaten	-	einfach	.5	-
	2	mittel	.7	14
	1	komplex	·10	10
Summe	19	_	E1	114
Einflussfaktoren (ändern	1 Verflechtung mit anderen		0
den Function Point Wert um		Anwendungssystemen (0-5)		
± 30%)		2 Dezentrale Daten, dezentrale		0
		Verarbeitung (0-5)		
		3 Transaktionsrate (0-5)		4
		4 Verarbeitungslogik		1
		a Rechenoperationen (0-10)		
		b Kontrollverfahren (0-5)		5 3
		c Ausnahmeregelungen (0-10)		2
		d Logik (0-5)		4
		5 Wiederverwendbarkeit (0-5) 6 Datenbestandskonvertierungen (0-5)		0
		7 Anpassbarkeit (0-5)		5
Summe der 7 Einflüsse		E2		24
Faktor Einflussbewertung		E3		0,94
=E2/100+0.7				0,51
Bewertete Function	Bewertete Function Points:		_	107
E1-E3				

Nimmt man die IBM-Function-Point-Wertepaare als Grundlage, so sind etwa 8,5 Mitarbeitermonate zu veranschlagen. Rein intuitiv halte ich diese Schätzung für realistisch.