
Assignment 7 Stephan Brumme July 11th, 2003
8th semester, 702544

www.stephan-brumme.com Architecture of the CORBA Component Model 1
summer term 2003

Implement the following interface running under Microsoft .NET or Rotor:

namespace ReverseAPI
{

public interface Reverser
{

string reverse(string arg);
}

}
Use a TCP channel listening on port 8421 in order to perform this task.

The “dedicated” language of Microsoft .NET is called C# to show some progress compared to C++. Even
though it lacks the most important feature of a programming language, the templates, it fits quite well in the
.NET framework and allows a quick and easy development of distributed systems.

One of .NET’s core features is Remoting which encapsulates a connectivity platform more or less comparable
to Corba CCM. Together with the Introspection API it enables one to abdicate the use of an additional interface
description language like IDL, CEDL or MIDL.

I decided to compile the interface (not its implementation !) to a binary file, i.e. a DLL. That file has to be pre-
sent both at the client and the server side. By distributing a binary file, I do not have to rely on a source code
based solution invoking a compiler and gain much flexibility as well as protection of intellectual properties.

In conclusion, the system looks like this:

ReverseAPI::Reverser

Client Server

Figure 1: Client-Server Scenario

The server has access to the RerverseAPI::Reverser interface and to its actual implementation (I called it
ReverserImplementation). On the other hand, the client can access the interface but not its implementation.
Indeed, he does not need to know how the concrete implementation is programmed.

Reversing a string turns out to be a matter of just four lines:

string strResult = "" ;

// iterate through the string and build a reverse c opy
foreach (char letter in arg)

strResult = letter + strResult ;

return strResult ;

The main task of the server is to register its interface implementation in the .NET framework. To do so, the
program obtains a new TcpServerChannel at port 8421. Then, the method RemotingConfigura-
tion.RegisterWellKnownServiceType adds the implementation to the name service. I decided to use a
SingleCall because the service does not have a long activation time.

class Server
{

static void Main()
{

// reserve port 8421
ChannelServices.RegisterChannel (new TcpServerChannel (8421));

Assignment 7 Stephan Brumme July 11th, 2003
8th semester, 702544

www.stephan-brumme.com Architecture of the CORBA Component Model 2
summer term 2003

// register the implementation (clients access it t hrough the interface !)
// using the URI " ReverserServer " and SingleCall activation
RemotingConfiguration.RegisterWellKnownServiceType

 (typeof (ReverserImplementation), " ReverserServer " ,
WellKnownObjectMode.SingleCall);

// and wait for incoming requests ...
Console.WriteLine ("Server ready ... press Enter to terminate !");
Console.ReadLine ();

}
}

The client registers a channel, too. This time, a client channel is invoked with no explicit port number. A bit
tricky is to obtain a remote object just from an interface because we cannot make use of the standard mechanism
that depends on the new keyword since it is impossible to apply new to an interface. As a workaround, all I have
to provide to the static method Activator.GetObject is an interface – exactly what I wanted to do. The URI
has to be preceded by tcp:// in order to indicate that the TCP based binary protocol is utilized.

// request an available TCP based channel
ChannelServices.RegisterChannel (new TcpClientChannel ());

// create a proxy for the remote object
Reverser proxy = (Reverser) Activator.GetObject (typeof (Reverser),

 "tcp://localhost:8421/ReverserServer");

Now that the proxy came to life, the client can call any operation he likes to. Due to the simple structure of the
given Reverser interface, the client is unfortunately restricted to reverse .

// actually invoke the proxy
Console.WriteLine ("Reversing the string \"Microsoft .NET\": \"" +

 proxy.reverse ("Microsoft .NET") + "\"");

There are a few conditions I did not mention: in a distributed system the network connection may fail, the
server may be unable to provide an object the fits to the proxy and so on. In the code you find at the end of this
paper I catch these exceptions (RemoteException) and verify that the proxy points to a valid object (not
null).

It was interesting how simple and easy a distributed system can be written using the astonishing flexible .NET
framework and C#. With the help of Microsoft’s Visual Studio .NET the whole project was completed in less
than an hour. The same program written for Corba – assignment 3 – required a far high effort of time and the
resulting program was a bit longer and syntactically complex. Not to forget that the C#/.NET solution runs out-
of-the-box if the framework is installed.

Assignment 7 Stephan Brumme July 11th, 2003
8th semester, 702544

www.stephan-brumme.com Architecture of the CORBA Component Model 3
summer term 2003

Reverser.cs

// // ////////
// Lecture on the CORBA Component Model, summer ter m 2003
// Assignment 7, Stephan Brumme, 702544
//
// Exactly as provided by Mr. von Löwis !
//

namespace ReverseAPI
{

public interface Reverser
{

string reverse(string arg);
}

}

ReverserImplementation.cs

// // ////////
// Lecture on the CORBA Component Model, summer ter m 2003
// Assignment 7, Stephan Brumme, 702544
//
// Implements the Reverse interface
//

namespace ReverseAPI
{

/// <summary>
/// Class that actually implements the Reverser int erface
/// </summary>
public class ReverserImplementation : System.MarshalByRefObject , Reverser
{

public string reverse(string arg)
{

string strResult = "" ;

// iterate through the string and build a reverse c opy
foreach (char letter in arg)

strResult = letter + strResult ;

return strResult ;
}

}
}

Assignment 7 Stephan Brumme July 11th, 2003
8th semester, 702544

www.stephan-brumme.com Architecture of the CORBA Component Model 4
summer term 2003

Server.cs

// // ////////
// Lecture on the CORBA Component Model, summer ter m 2003
// Assignment 7, Stephan Brumme, 702544
//
// Microsoft .NET server that exports a "reverse" o peration
//

// for console output
using System;

// remoting
using System.Runtime.Remoting ;
using System.Runtime.Remoting.Channels ;
using System.Runtime.Remoting.Channels.Tcp ;

// reverse operation
using ReverseAPI ;

namespace Aufgabe7
{

/// <summary>
/// The server class registers itself at port 8421
/// </summary>
class Server
{

static void Main()
{

// reserve port 8421
ChannelServices.RegisterChannel (new TcpServerChannel (8421));

// register the implementation (clients access it t hrough the interface !)
// using the URI " ReverserServer " and SingleCall activation
RemotingConfiguration.RegisterWellKnownServiceType

 (typeof (ReverserImplementation), " ReverserServer " ,
WellKnownObjectMode.SingleCall);

// and wait for incoming requests ...
Console.WriteLine ("Server ready ... press Enter to terminate !");
Console.ReadLine ();

}
}

}

Assignment 7 Stephan Brumme July 11th, 2003
8th semester, 702544

www.stephan-brumme.com Architecture of the CORBA Component Model 5
summer term 2003

Client.cs

// // ////////
// Lecture on the CORBA Component Model, summer ter m 2003
// Assignment 7, Stephan Brumme, 702544
//
// Microsoft .NET client that calls a remote "rever se" operation
//

// for console output
using System;

// remoting
using System.Runtime.Remoting ;
using System.Runtime.Remoting.Channels ;
using System.Runtime.Remoting.Channels.Tcp ;

// reverse operation
using ReverseAPI ;

namespace Aufgabe7
{

/// <summary>
/// Encapsulates the Main method
/// </summary>
class Client
{

static void Main()
{

// catch any RemoteException
try
{

// request an available TCP based channel
ChannelServices.RegisterChannel (new TcpClientChannel ());

// create a proxy for the remote object
Reverser proxy = (Reverser) Activator.GetObject (typeof (Reverser),

 "tcp://localhost:8421/ReverserServer");

// failed ?
if (proxy == null)
{

Console.WriteLine ("Invalid reference.");
return ;

}

// actually invoke the proxy
Console.WriteLine ("Reversing the string \"Microsoft .NET\": \"" +

 proxy.reverse ("Microsoft .NET") + "\"");
}
catch (RemotingException)
{

// something went wrongs
Console.WriteLine ("Server not found.");

}
}

}
}

