Tutorial "Performance Evaluation Techniques" Third Problem Sheet

Dr.-Ing. Andreas Willig
Hasso-Plattner-Institute, University of Potsdam
email: willig@hpi.uni-potsdam.de

May 12, 2003

Problem 1:

In the tutorial we discussed one modeling problem involving a TH-DTMC:

with transition matrix:

$$
\mathbf{P}=\left(\begin{array}{ccc}
1-p & p(1-p) & p^{2} \\
1-p & p(1-p) & p^{2} \\
0 & 1-p & p
\end{array}\right)
$$

where $p \in(0,1)$ is a parameter. Show that:

- The TH-DTMC is irreducible and aperiodic
- Find the steady-state vector $\pi=\left(\pi^{(0)}, \pi^{(1)}, \pi^{(2)}\right)$ (this vector is guaranteed to exist, since all finite, irreducible and aperiodic TH-DTMCs are also positive recurrent).

	4

Problem 2:

(Modeling Problem) Consider a computer system with two identical processors working in parallel. Time is slotted. The system works according to the following rules:

- In each time slot at most one new task arrives, which happens with probability $\alpha \in(0,1)$ per slot. Task arrivals are independent.
- If one processor is available, the task is immediately started at this processor.
- If two processors are available, the task is immediately started on processor 1.
- If both processors are busy, the task is lost.
- A single processor ends a task in a slot with probability β, the tasks are independent. (Hence, the event that both processors end their tasks is given by β^{2}). Ended tasks leave the system.
- If a new task arrives in a slot where at least one processor ends a task, the task will be served.

Develop a TH-DTMC model for this system. Let the state variable X_{n} denote the number of busy servers during time slot n.

- Draw a diagram showing the possible state transitions.
- Find the state transition probabilities and give the state transition matrix \mathbf{P}.
- Find the steady-state vector.
- For $\alpha=\beta=0.01$ compute the steady state vector and the mean utilization:

$$
\sum_{i=0}^{2} i \cdot \pi^{(i)}
$$

Bonus Problem 3:

In another problem discussed in the tutorial we developed the following matrix of a THDTMC:

$$
\mathbf{P}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & \ldots & 0 \\
b(0 ; 1, p) & b(1 ; 1, p) & 0 & 0 & \ldots & 0 \\
b(0 ; 2, p) & b(1 ; 2, p) & b(2 ; 2, p) & 0 & \ldots & 0 \\
\ldots & & & & & \\
b(0 ; N, p) & b(1 ; N, p) & b(2 ; N, p) & b(3 ; N, p) & \ldots & b(N ; N, p)
\end{array}\right)
$$

where $p \in(0,1)$ is a parameter, $b(k ; n, p)=\binom{n}{k} p^{k}(1-p)^{n-k}$ is the distribution function of the binomial distribution and \mathbf{P} is an $(N+1) \times(N+1)$ matrix. Use $p=0.3, N=10$ and the initial state vector is

$$
\pi_{0}=\left(\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Print $\pi_{k}=\pi_{k-1} \cdot \mathbf{P}=\pi_{0} \cdot \mathbf{P}^{k}$ for $k \in\{1,2,5,8,10\}$. Write a program/script using a suitable mathematics package (maxima/xmaxima, GNU octave, scilab) or in your favorite programming language.

