Problem 1

In the tutorial we discussed one modeling problem involving a TH-DTMC:

with transition matrix

$$
P=\left(\begin{array}{ccc}
1-p & p \cdot(1-p) & p^{2} \\
1-p & p \cdot(1-p) & p^{2} \\
0 & 1-p & p
\end{array}\right)
$$

where $p \in(0,1)$ is a parameter. Show that:

- The TH-DTMC is irreducible and aperiodic.
- Find the steady-state vector $\pi=\left(\pi^{(0)}, \pi^{(1)}, \pi^{(2)}\right)$ (this vector is guaranteed to exist since all finite, irreducible and aperiodic TH-DTMCs are also positive recurrent).

A DTMC is irreducible if between any two of the states of its state space exists a path that connects them. Obviously, all three states of the given diagram are directly connected except for state $2 \rightarrow$ state 0 where a path via state 1 exists.

A state is periodic if the only way to return to itself is through paths of length $k \cdot d$ for some values of k and a fixed value of $d>1$. One can see on first glance in the diagram above that there are paths for each state returning to themselves. Therefore, we get $d=1$, a contradiction to the definition of the term "periodic". If a state is not periodic, then it is aperiodic. In addition, the given DTMC is ergodic because it is aperiodic and positive recurrent (as defined above).

The steady-state vector ought to fulfill two basic equations:

$$
\begin{aligned}
\pi & =\pi \cdot P \\
1 & =\sum_{i=0}^{N} \pi_{i}
\end{aligned}
$$

The latter (called normalization condition) can be rewritten in our case as:

$$
1=\pi_{0}+\pi_{1}+\pi_{2}
$$

In the steady state the total flow out of a state is equal to the total flow into that state. Based on this property, called flow balance, one can write flow balance equations for any state of the process.

Figure 1: Flow to and out of a state

The flow from a state to itself (retaining) belongs both to the in- and out-flow and can be omitted in order to further simplify the formulas:

$$
\begin{aligned}
\sum_{\text {all states } j}\left(i n_{j} \cdot \pi_{i}\right) & =\sum_{\text {all states } j}\left(o u t_{j} \cdot \pi_{j}\right) \\
\pi_{i} \cdot \sum_{\text {all states }} \sum_{j \neq i} & =\sum_{\text {all states }}(o u \neq i
\end{aligned}
$$

However, solving $\pi=\pi \cdot P$ seems to fabricate usually shorter formulas. We can write now:

$$
\begin{aligned}
& \pi_{0}=(1-p) \cdot \pi_{0}+(1-p) \cdot \pi_{1} \\
& \pi_{1}=p \cdot(1-p) \cdot \pi_{0}+p \cdot(1-p) \cdot \pi_{1}+(1-p) \cdot \pi_{2} \\
& \pi_{2}=p^{2} \cdot \pi_{0}+p^{2} \cdot \pi_{1}+p \cdot \pi_{2}
\end{aligned}
$$

First, we express π_{0} in terms of π_{1} :

$$
\begin{aligned}
\pi_{0} & =(1-p) \cdot \pi_{0}+(1-p) \cdot \pi_{1} \\
p \cdot \pi_{0} & =(1-p) \cdot \pi_{1} \\
\pi_{0} & =\frac{1-p}{p} \cdot \pi_{1}
\end{aligned}
$$

Now, we repeat the same procedure for π_{1} and apply the knowledge gained recently:

$$
\begin{aligned}
\pi_{1} & =p \cdot(1-p) \cdot \pi_{0}+p \cdot(1-p) \cdot \pi_{1}+(1-p) \cdot \pi_{2} \\
(1-p \cdot(1-p)) \cdot \pi_{1} & =(1-p)^{2} \cdot \pi_{1}+(1-p) \cdot \pi_{2} \\
p \cdot \pi_{1} & =(1-p) \cdot \pi_{2} \\
\pi_{1} & =\frac{1-p}{p} \cdot \pi_{2}
\end{aligned}
$$

The normalization condition gives:

$$
\begin{aligned}
1 & =\pi_{0}+\pi_{1}+\pi_{2} \\
1 & =\left(\frac{1-p}{p}\right)^{2} \cdot \pi_{2}+\frac{1-p}{p} \cdot \pi_{2}+\pi_{2} \\
\pi_{2} & =\frac{1}{\left(\frac{1-p}{p}\right)^{2}+\frac{1-p}{p}+1} \\
& =\frac{1}{\frac{(1-p)^{2}+p \cdot(1-p)+p^{2}}{p^{2}}} \\
& =\frac{p^{2}}{(1-p)^{2}+p} \\
& =\frac{p^{2}}{p^{2}-p+1}
\end{aligned}
$$

$$
\pi_{1}=\frac{1-p}{p} \cdot \pi_{2}
$$

$$
=\frac{1-p}{p} \cdot \frac{p^{2}}{p^{2}-p+1}
$$

$$
=\frac{(1-p) \cdot p}{p^{2}-p+1}
$$

$$
\pi_{0}=\frac{1-p}{p} \cdot \pi_{1}
$$

$$
=\frac{1-p}{p} \cdot \frac{(1-p) \cdot p}{p^{2}-p+1}
$$

$$
=\frac{(1-p)^{2}}{p^{2}-p+1}
$$

Hence, the steady state vector is of the form:

$$
\pi=\left(\begin{array}{lll}
\frac{(1-p)^{2}}{p^{2}-p+1} & \frac{(1-p) \cdot p}{p^{2}-p+1} & \frac{p^{2}}{p^{2}-p+1}
\end{array}\right)
$$

Problem 2

(Modeling Problem) Consider a computer system with two identical processors working in parallel. Time is slotted. The system works according to the following rules:

- In each time slot at most one new task arrives, which happens with probability $\alpha \in(0,1)$ per slot. Task arrivals are independent.
- If one processor is available, the task is immediately started at this processor.
- If two processors are available, the task is immediately started on processor 1.
- If both processors are busy, the task is lost.
- A single processor ends a task in a slot with probability β, the tasks are independent. (Hence, the event that both processors end their tasks is given by β^{2}). Ended tasks leave the system.
- If a new task arrives in a slot where at least one processor ends a task, the task will be served.

Develop a TH-DTMC model for this system. Let the state variable X_{n} denote the number of busy servers during time slot n.

- Draw a diagram showing the possible state transitions.
- Find the state transition probabilities and give the state transition matrix P.
- Find the steady-state vector.
- For $\alpha=\beta=0.01$ compute the steady state vector and the mean utilization $\sum_{i=0}^{2} i \cdot \pi^{(i)}$

At first, there are four different possibilities of processor loads. In the diagram below (Figure 1), the left side corresponds to processor 1 while the right side corresponds to processor 2. The diagram does not represent the actual state transition diagram. In other words: it only attempts to offer an easily accessible view on the issue.

Figure 2: Overview

Indeed, we are looking for a state transition diagram where each state stands for a unique number of tasks currently processed by the system. In Figure 1 we chose the colors depending on the number of tasks: obviously, the green states $1 / 0$ and $0 / 1$ can be grouped reducing the complexity of the problem to just three states.

One has to be careful when finding the state transition probabilities: it is allowed that two tasks leave the system at the same time. Therefore:

$$
\begin{aligned}
\operatorname{Pr}[" \text { no tasks arrives" } " & =(1-\alpha) \\
\operatorname{Pr}[\text { "one tasks arrives" }] & =\alpha \\
\operatorname{Pr}[\text { "no tasks finishes" }] & =(1-\beta)^{2} \\
\operatorname{Pr}[\text { "one tasks finishes" }] & =(1-\beta) \cdot \beta \\
\operatorname{Pr}[\text { "two tasks finish" }] & =\beta^{2}
\end{aligned}
$$

It is said that arrivals are independent and finishing tasks is as well. So it seems to be quite easy to gather all state transition probabilities in a diagram asked for:

Figure 3: State transition diagram

Now that we have the state transition diagram (Figure 3) the 3×3 state transition matrix P is as follows:

$$
P=\left(\begin{array}{ccc}
1-\alpha & \alpha & 0 \\
(1-\alpha) \cdot \beta & \alpha \beta+(1-\alpha) \cdot(1-\beta) & \alpha \cdot(1-\beta) \\
(1-\alpha) \cdot \beta^{2} & \alpha \beta^{2}+2 \cdot(1-\alpha) \cdot \beta \cdot(1-\beta) & (1-\beta)^{2}+2 \alpha \beta \cdot(1-\beta)
\end{array}\right)
$$

However, the steady state vector turns out to be a bit more complex than the one we found in problem 1 on page 3:

$$
\begin{aligned}
& \pi_{0}=(1-\alpha) \cdot \pi_{0}+(1-\alpha) \cdot \beta \cdot \pi_{1}+(1-\alpha) \cdot \beta^{2} \cdot \pi_{2} \\
& \pi_{1}=\alpha \cdot \pi_{0}+(\alpha \beta+(1-\alpha) \cdot(1-\beta)) \cdot \pi_{1}+\left(\alpha \beta^{2}+2 \cdot(1-\alpha) \cdot \beta \cdot(1-\beta)\right) \cdot \pi_{2} \\
& \pi_{2}=\alpha \cdot(1-\beta) \cdot \pi_{1}+\left((1-\beta)^{2}+2 \alpha \beta \cdot(1-\beta)\right) \cdot \pi_{2}
\end{aligned}
$$

The last formula is solved first:

$$
\begin{aligned}
\pi_{2} & =\alpha \cdot(1-\beta) \cdot \pi_{1}+\left((1-\beta)^{2}+2 \alpha \beta \cdot(1-\beta)\right) \cdot \pi_{2} \\
\left(1-(1-\beta)^{2}+2 \alpha \beta \cdot(1-\beta)\right) \cdot \pi_{2} & =\alpha \cdot(1-\beta) \cdot \pi_{1} \\
\pi_{2} & =\frac{\alpha \cdot(1-\beta)}{2 \beta-\beta^{2}+2 \alpha \beta \cdot(1-\beta)} \cdot \pi_{1} \\
\pi_{2} & =\frac{\alpha \cdot(1-\beta)}{\beta \cdot(2-\beta+2 \alpha \cdot(1-\beta))} \cdot \pi_{1}
\end{aligned}
$$

And the same goes for π_{0} :

$$
\begin{aligned}
\pi_{0} & =(1-\alpha) \cdot \pi_{0}+(1-\alpha) \cdot \beta \cdot \pi_{1}+(1-\alpha) \cdot \beta^{2} \cdot \pi_{2} \\
\alpha \cdot \pi_{0} & =(1-\alpha) \cdot \beta \cdot \pi_{1}+(1-\alpha) \cdot \beta^{2} \cdot \pi_{2} \\
\alpha \cdot \pi_{0} & =(1-\alpha) \cdot \beta \cdot \pi_{1}+(1-\alpha) \cdot \beta^{2} \cdot \frac{\alpha \cdot(1-\beta)}{\beta \cdot(2-\beta+2 \alpha \cdot(1-\beta))} \cdot \pi_{1} \\
\pi_{0} & =\frac{1}{\alpha} \cdot\left((1-\alpha) \cdot \beta+\frac{\alpha \beta \cdot(1-\alpha) \cdot(1-\beta)}{2-\beta+2 \alpha \cdot(1-\beta)}\right) \cdot \pi_{1} \\
\pi_{0} & =\frac{(1-\alpha) \cdot \beta}{\alpha} \cdot\left(1+\frac{\alpha \cdot(1-\beta)}{2-\beta+2 \alpha \cdot(1-\beta)}\right) \cdot \pi_{1}
\end{aligned}
$$

Applying the normalization condition:

$$
\begin{aligned}
& 1=\pi_{0}+\pi_{1}+\pi_{2} \\
& 1=\frac{(1-\alpha) \cdot \beta}{\alpha} \cdot\left(1+\frac{\alpha \cdot(1-\beta)}{2-\beta+2 \alpha \cdot(1-\beta)}\right) \cdot \pi_{1}+\cdot \pi_{1}+\frac{\alpha \cdot(1-\beta)}{\beta \cdot(2-\beta+2 \alpha \cdot(1-\beta))} \cdot \pi_{1} \\
& 1=\pi_{1} \cdot\left(1+\frac{(1-\alpha) \cdot \beta}{\alpha} \cdot\left(1+\frac{\alpha \cdot(1-\beta)}{2-\beta+2 \alpha \cdot(1-\beta)}\right)+\frac{\alpha \cdot(1-\beta)}{\beta \cdot(2-\beta+2 \alpha \cdot(1-\beta))}\right) \\
& \pi_{1}=\left(1+\frac{(1-\alpha) \cdot \beta}{\alpha}+\frac{(1-\alpha) \cdot \beta \cdot(1-\beta)}{2-\beta+2 \alpha \cdot(1-\beta)}+\frac{\alpha \cdot(1-\beta)}{\beta \cdot(2-\beta+2 \alpha \cdot(1-\beta))}\right)^{-1}
\end{aligned}
$$

Eliminating most of the brackets simplifies the formulas a lot, as seen on the next page.

However, the steady state vector takes up quite some space - we are forced to show the transpose of π otherwise we would need to switch to A3 paper size. Maybe some optimizations are left we did not discover yet:

$$
\pi^{T}=\left(\begin{array}{c}
-\frac{\beta^{2} \cdot\left(2-3 \alpha+\alpha^{2}-\beta+2 \alpha \beta-\alpha^{2} \beta\right)}{-\alpha^{2}-2 \alpha \beta+3 \alpha^{2} \beta-2 \beta^{2}+4 \alpha \beta^{2}-3 \alpha^{2} \beta^{2}+\beta^{3}-2 \alpha \beta^{3}+\alpha^{2} \beta^{3}} \\
-\frac{\beta \cdot\left(2 \alpha-2 \alpha^{2} \beta-\alpha \beta^{2}+2 \alpha^{2} \beta^{2}\right)}{-\alpha^{2}-2 \alpha \beta+3 \alpha^{2} \beta-2 \beta^{2}+4 \alpha \beta^{2}-3 \alpha^{2} \beta^{2}+\beta^{3}-2 \alpha \beta^{3}+\alpha^{2} \beta^{3}} \\
\frac{\alpha^{2} \cdot(\beta-1)}{-\alpha^{2}-2 \alpha \beta+3 \alpha^{2} \beta-2 \beta^{2}+4 \alpha \beta^{2}-3 \alpha^{2} \beta^{2}+\beta^{3}-2 \alpha \beta^{3}+\alpha^{2} \beta^{3}}
\end{array}\right)
$$

Under the assumption that $\alpha=\beta=0.01$ the state transition matrix can be evaluated as:

$$
P=\left(\begin{array}{ccc}
0.99 & 0.01 & 0 \\
0.0099 & 0.9802 & 0.0099 \\
0.000099 & 0.019603 & 0.980298
\end{array}\right)
$$

Therefore, the steady state vector is approximately:

$$
\pi \approx\left(\begin{array}{lll}
0.398394349 & 0.400406544 & 0.201199106
\end{array}\right)
$$

Of course both equations $\pi=\pi \cdot P$ and $1=\pi_{0}+\pi_{1}+\pi_{2}$ hold true for these π and P.
Finally, the mean utilization $\sum_{i=0}^{2} i \cdot \pi^{(i)}$:

$$
\begin{aligned}
\sum_{i=0}^{2} i \cdot \pi^{(i)} & =0 \cdot \pi_{0}+1 \cdot \pi_{1}+2 \cdot \pi_{2} \\
& =\pi_{1}+2 \cdot \pi_{2} \\
& \approx 0.400406544+2 \cdot 0.201199106 \\
& \approx 0.802804756
\end{aligned}
$$

In the long-run average we will detect about 0.8 tasks in the system which means that the average load tends to be approximately as low as 40%.

Problem 3 (Bonus)

In another problem discussed in the tutorial we developed the following matrix of a TH-DTMC:
$P=\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & \cdots & 0 \\ b(0 ; 1, p) & b(1 ; 1, p) & 0 & 0 & \cdots & 0 \\ b(0 ; 2, p) & b(1 ; 2, p) & b(2 ; 2, p) & 0 & \cdots & 0 \\ \cdots & & & & \ddots & \\ b(0 ; N, p) & b(1 ; N, p) & b(2 ; N, p) & b(3 ; N, p) & \cdots & b(N ; N, p)\end{array}\right)$
where $p \in(0,1)$ is a parameter, $b(k ; n, p)=\binom{n}{k} \cdot p^{k} \cdot(1-p)^{n-k} \quad$ is the distribution function of the binomial distribution and P is an $(N+1) \times(N+1)$ matrix. Use $p=0.3, N=10$ and the initial state vector $\pi_{0}=(00000000001)$.

Print $\pi_{k}=\pi_{k-1} \cdot P=\pi_{0} \cdot P^{k}$ for $k \in\{1,2,5,8,10\}$. Write a program/script using a suitable mathematics package (maxima/xmaxima, GNU octave, scilab) or in your favorite programming language.

The trial version of Maple 8 offers a great variety of mathematical functions. Especially vector and matrix computations, as needed for that bonus problem, can be implemented with just a few lines.

After defining a function b, the distribution function of binomial distribution, the construction of the matrix P can be performed. Next, π_{0} is filled with its initial values. The last lines compute $\pi_{1}, \pi_{2}, \pi_{5}, \pi_{8}, \pi_{10}$.

```
[> with(LinearAlgebra): p := 0.3: N := 10:
[> b := (k_, n_) -> binomial(n_, k_) *p^ k_* (1. -p)^(n_-k_):
[> P := Matrix (N+1, N+1, 0.):
l> P[1,1]:= 1.:
    for i from 2 to N+1 do
        for j from 1 to i do
            P[i,j] := b(j-1, i-1);
        od;
    od;
> pi0 := Nector[row] (N+1, 0): pi0[N+1] := 1.:
    for k in [1,2,5,8,10] do
        pik := (pi0 . p^k):
        printf("%3d : ( ", k);
        for i from 1 to N do printf("%010.8f, ", pik[i]); od;
        printf("%010.8f )\n", pik[N+1]);
    od;
>
        *)
        :(0.02824752, 0.12106082, 0.23347444, 0.26682793, 0.20012095, 0.10291935, 0.03675691, 0.00900169, 0.00144670, 0.00013778, 0.00000590)
            pik:=[l}\begin{array}{l}{11\mathrm{ Element Row Vector }}\\{\mathrm{ Data Type: float[8] }}\\{\mathrm{ Storage: rectangular}}\\{\mathrm{ Orer: Forran}}\end{array}
                                    Order: Fortran order
2 : (0.38941612, 0.38513682, 0.17140705, 0.04520625, 0.00782416, 0.00092858, 0.00007653, 0.00000433, 0.00000016, 0.00000000, 0.00000000)
    pik:=[ll}\begin{array}{l}{11\mathrm{ Element Row Vector }}\\{\mathrm{ Data Type: float[8] }}\\{\mathrm{ Storage: rectangular }}\\{\mathrm{ Order: Fortran_order }}\end{array}
5 : ( 0.97596401, 0.02377370, 0.00026060, 0.00000169, 0.00000001, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000)
pik}=[\begin{array}{l}{11\mathrm{ Element Row Vector }}\\{\mathrm{ Data Type: float[8]}}\\{\mathrm{ Storage: rectangular }}\\{\mathrm{ Order: Fortran_order }}\end{array}
pik:=[l}11\mathrm{ Element Row Vector 
```

[^0]
[^0]: $=10:(0.99994095,0.00005905,0.00000000,0.00000000,0.00000000,0.00000000,0.00000000,0.00000000,0.00000000,0.00000000,0.00000000)$

