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Problem 1 

In the tutorial we discussed one modeling problem involving a TH-DTMC: 
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where ( )1,0∈p  is a parameter. Show that: 

� The TH-DTMC is irreducible and aperiodic. 

� Find the steady-state vector ( ) ( ) ( )( )210 ,, ππππ =  (this vector is guaranteed to exist since all finite, 

irreducible and aperiodic TH-DTMCs are also positive recurrent). 
 

A DTMC is irreducible if between any two of the states of its state space exists a path that connects them. 
Obviously, all three states of the given diagram are directly connected except for state 2 � state 0 where a path 
via state 1 exists.  

A state is periodic if the only way to return to itself is through paths of length dk ⋅  for some values of k  and 

a fixed value of 1>d . One can see on first glance in the diagram above that there are paths for each state 

returning to themselves. Therefore, we get 1=d , a contradiction to the definition of the term “periodic”. If a 
state is not periodic, then it is aperiodic. In addition, the given DTMC is ergodic because it is aperiodic and posi-
tive recurrent (as defined above). 

The steady-state vector ought to fulfill two basic equations: 
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The latter (called normalization condition) can be rewritten in our case as: 

2101 πππ ++=  
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In the steady state the total flow out of a state is equal to the total flow into that state. Based on this property, 
called flow balance, one can write flow balance equations for any state of the process. 

 

nin out

retaining

 

Figure 1: Flow to and out of a state 

 

The flow from a state to itself (retaining) belongs both to the in- and out-flow and can be omitted in order to 
further simplify the formulas: 
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However, solving P⋅= ππ  seems to fabricate usually shorter formulas. We can write now: 
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First, we express 0π  in terms of 1π : 
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Now, we repeat the same procedure for 1π  and apply the knowledge gained recently: 
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The normalization condition gives: 
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Hence, the steady state vector is of the form: 
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Problem 2 

(Modeling Problem) Consider a computer system with two identical processors working in parallel. Time is 
slotted. The system works according to the following rules: 

� In each time slot at most one new task arrives, which happens with probability ( )1,0∈α   per slot. Task 

arrivals are independent. 
� If one processor is available, the task is immediately started at this processor. 
� If two processors are available, the task is immediately started on processor 1. 
� If both processors are busy, the task is lost. 
� A single processor ends a task in a slot with probability β , the tasks are independent. (Hence, the event 

that both processors end their tasks is given by 2β ). Ended tasks leave the system. 

� If a new task arrives in a slot where at least one processor ends a task, the task will be served. 

Develop a TH-DTMC model for this system. Let the state variable nX  denote the number of busy servers 

during time slot n . 

� Draw a diagram showing the possible state transitions. 
� Find the state transition probabilities and give the state transition matrix P. 
� Find the steady-state vector. 

� For  01.0== βα  compute the steady state vector and the mean utilization ( )∑
=

⋅
2
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At first, there are four different possibilities of processor loads. In the diagram below (Figure 1), the left side 
corresponds to processor 1 while the right side corresponds to processor 2. The diagram does not represent the 
actual state transition diagram. In other words: it only attempts to offer an easily accessible view on the issue.  

 

0/0

1/0 0/1

1/1

no arrival

one arrival no arrival & one finished

no arrival &
both finished

no arrival & none finished
or

one arrival & one finished

no arrival & one
finished

no arrival & none finished

one arrival & none finished one arrival & none finished

no arrival &
one finished

or
one arrival &
both finished

no arrival & one
finished

one arrival & one finished
or

no arrival & none finished
or

one arrival & none finished
(task lost !)

symbols:

a/b
a - tasks processed by processor 1
b - tasks processed by processor 2

note: at most 1 task can be served by each processor

one arrival & one finished

 

Figure 2: Overview 
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Indeed, we are looking for a state transition diagram where each state stands for a unique number of tasks 
currently processed by the system. In Figure 1 we chose the colors depending on the number of tasks: obviously, 
the green states 1/0 and 0/1 can be grouped reducing the complexity of the problem to just three states.  

One has to be careful when finding the state transition probabilities: it is allowed that two tasks leave the 
system at the same time. Therefore: 
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It is said that arrivals are independent and finishing tasks is as well. So it seems to be quite easy to gather all 
state transition probabilities in a diagram asked for: 
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Figure 3: State transition diagram 

 

Now that we have the state transition diagram (Figure 3) the 3x3 state transition matrix P  is as follows: 
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However, the steady state vector turns out to be a bit more complex than the one we found in problem 1 on 
page 3: 
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The last formula is solved first: 
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And the same goes for 0π : 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( )( )

( ) ( ) ( )
( )

( ) ( )
( ) 10

10

1
2

10

2
2

10

2
2

100

122

1
1

1

122

11
1

1

122

1
11

11

111

π
βαβ

βα
α

βαπ

π
βαβ
βααββα

α
π

π
βαββ

βαβαπβαπα

πβαπβαπα
πβαπβαπαπ

⋅





−⋅+−
−⋅+⋅⋅−=

⋅



−⋅+−
−⋅−⋅+⋅−⋅=

⋅
−⋅+−⋅

−⋅⋅⋅−+⋅⋅−=⋅

⋅⋅−+⋅⋅−=⋅

⋅⋅−+⋅⋅−+⋅−=

 

Applying the normalization condition: 
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Eliminating most of the brackets simplifies the formulas a lot, as seen on the next page. 
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However, the steady state vector takes up quite some space – we are forced to show the transpose of π  
otherwise we would need to switch to A3 paper size. Maybe some optimizations are left we did not discover yet: 
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Under the assumption that 01.0== βα  the state transition matrix can be evaluated as: 
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Therefore, the steady state vector is approximately: 

( )60.2011991040.4004065490.39839434≈π  

Of course both equations P⋅= ππ  and 2101 πππ ++=  hold true for these π  and P . 
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In the long-run average we will detect about 0.8 tasks in the system which means that the average load tends to 
be approximately as low as 40%. 
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Problem 3 (Bonus) 

In another problem discussed in the tutorial we developed the following matrix of a TH-DTMC: 
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where ( )1,0∈p   is a parameter, ( ) ( ) knk pp
k

n
pnkb −−⋅⋅




= 1,;   is the distribution function of the 

binomial distribution and P  is an ( ) ( )11 +×+ NN  matrix. Use 3.0=p , 10=N  and the initial state 

vector ( )100000000000 =π .  

Print k
kk PP ⋅=⋅= − 01 πππ  for { }10,8,5,2,1∈k . Write a program/script using a suitable mathematics 

package (maxima/xmaxima, GNU octave, scilab) or in your favorite programming language. 

 

The trial version of Maple 8 offers a great variety of mathematical functions. Especially vector and matrix 
computations, as needed for that bonus problem, can be implemented with just a few lines. 

After defining a function b , the distribution function of binomial distribution, the construction of the matrix 

P   can be performed. Next, 0π  is filled with its initial values. The last lines compute 1π , 2π , 5π , 8π , 10π . 

 


