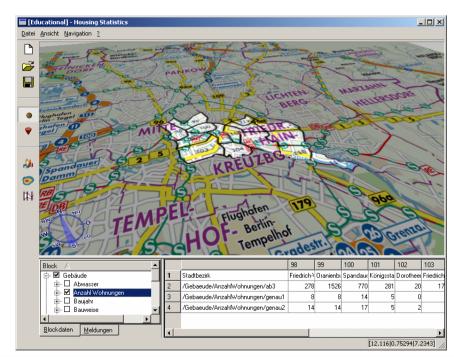
Steffen Heinrich und Stephan Brumme

26. September 2003



Agenda

- Überblick
- Aufbau
- Visualisierungsstrategien
- Ausblick

Überblick - I

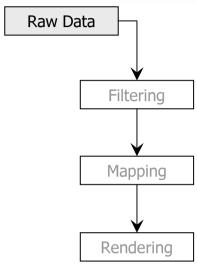
- VisaRD:
 - Visualisierung raumbezogener Daten
- 3D-unterstützte Exploration und Navigation Berliner Wohnungs- und Gebäudedaten
 - Bezirke Mitte und Friedrichshain
 - insgesamt 15 Stadtgebiete
 - fast 100 Variablen erfasst

Überblick - II

Hausaufgabe im Fach "Visualisierung"

im Masterstudiengang Softwaresystemtechnik am

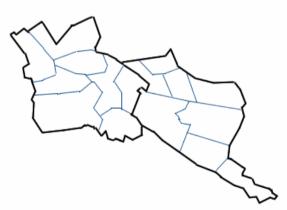
Hasso-Plattner-Institut

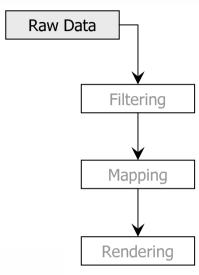

 Umsetzung interaktiver Visualisierungsstrategien auf Basis georeferenzierter, hochdimensionaler Datensätze

- Erforschung der Nutzbarkeit von
 Visualisierungstechniken für statistische
 Daten im Wohnungssektor
- Nutzung portabler Bibliotheken wie VRS, LandExplorer, Qt

Aufbau - I

- Rohdaten in Form von 18 Excel-Tabellen gegeben
 - proprietäres Format
 - Export in die offene
 eXtensible Markup Language XML

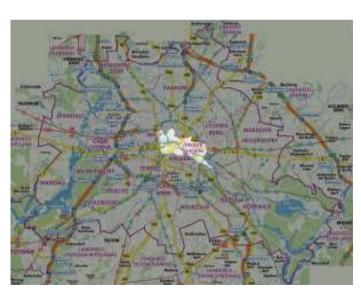


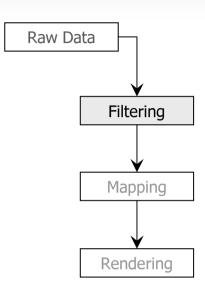


Aufbau - II

- Kartenmaterial den Berliner
 Gelben Seiten entnommen
 - CD 2003/2004
 - da hochqualitatives Material nicht frei verfügbar
 - ggf. Probleme mit Urheberrecht möglich

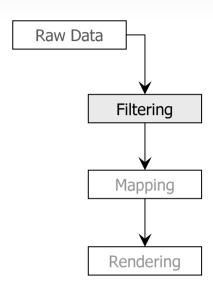
Georeferenzierung der Stadtgebiete von Hand hinzugefügt


Aufbau - III

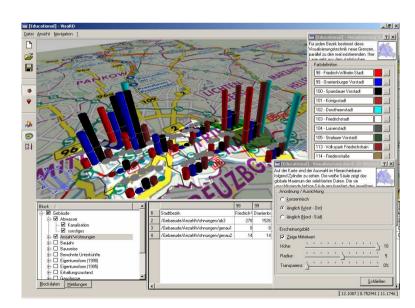

- Enorm großer Datenraum
 - 80 Variablen pro Block
 - 198 Blöcke
 - → ca. 9 MByte XML-Daten

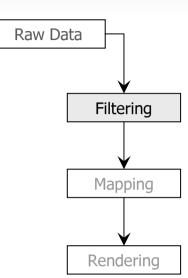
keine Georeferenzierung einzelner

Blöcke ermittelbar

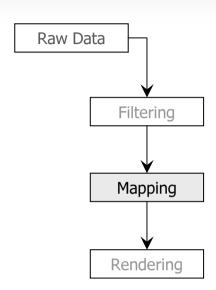

auch zu geringe
 Auflösung der Karte

Aufbau - III

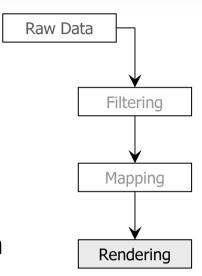

- → "Too much data, too little space"!
- Reduktion der Daten notwendig
 - jeweils einen Gesamt- bzw.
 Durchschnittswert pro Stadtgebiet und pro Variable
 - Filterung erfolgt offline



Aufbau - IV


- Parametrisierung
 - Struktur der Eingabedaten zur Laufzeit identifiziert
 - Analyse der transformierten XML-Daten
 - Konfiguration angezeigter Attribute
 - config.xml
 - interaktive Bedienung des Programms

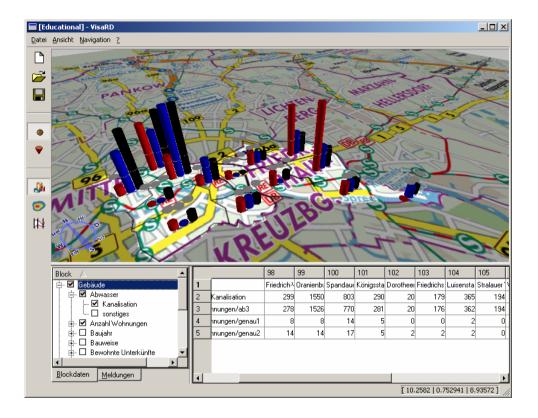
Aufbau - V

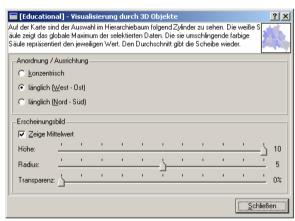

- überwiegend diskrete Daten
 - und nicht-negativ
- trotzdem stark unterschiedliche Wertebereiche
 - Normalisierung auf [0,1] notwendig
- Bestimmung statistischer Eigenschaften
 - Minimum, Maximum, arithm. Mittel

Aufbau - VI

Verwendung von VRS und LandExplorer

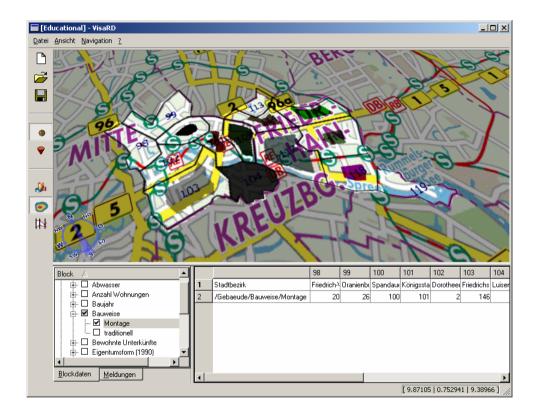
- 3D-Darstellung von Gelände und Visualisierungstechniken (Flächen- und Zylindervisualisierung)
- frei verfügbare Bibliotheken, portabel
- nutzen 3D-Hardware-Beschleunigung
- bieten neben Rendering auch Navigationsmetaphern

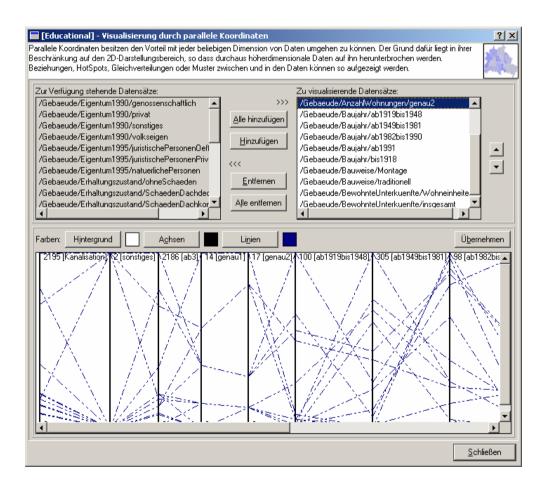



• Einsatz von Qt 3.2

- gesamtes GUI
- Parallele-Koordinaten-Plot
- zur 2D-Darstellung geeignet
- für akademische Zwecke frei, portabel

Visualisierungsstrategien - I


Zylindervisualisierung


Visualisierungsstrategien - II

Flächenvisualisierung

Visualisierungsstrategien - III

Parallele-Koordinaten-Plots

Ausblick - I

- Implementierung weiterer Visualisierungsstrategien
 - Glyphen
 - 2D/3D-Verzerrung
 - ähnlich wie im Falk-Stadtplan, allerdings interaktiv
 - Visual Access Distorsion

— ...

- Optimierung des GUI und der Navigation
 - "Fish-Eye"-Darstellung der Datentabelle
 - mehr Feedback auf Mausbewegungen
 - Magic Lens
 - Transfer of Focus of Attention
 - mit Zooming und Panning

– ...

Ausblick - II

- Erweiterung der Datensätze
 - Georeferenzierung auch für Blöcke
 - alle Berliner Stadtgebiete
 - andere Städte als Berlin
- Einschränkung der Datensätze
 - selektive Auswahl einzelner Stadtgebiete
- Optimierung der Hardwareanforderungen

Diskussion

