
- 1 -

Monitoring The Gnutella Network

Stephan Brumme
Hasso-Plattner-Institute for Software Systems Engineering, Potsdam, Germany

currently at the University of Technology, Sydney, Australia

Abstract In this paper, I describe an intelligent agent crawling the Gnutella peer-to-peer net-
work in order to detect clients in a certain IP range. This tool is helpful for administrator trying
to avoid wasting bandwidth due to peer-to-peer file sharing programs. Moreover, almost all
files shared over the internet are illegal – like non-licensed MP3 music – which can lead to po-
tential law suits. In the past years, security leaks are often found in various server programs.
Peer-to-peer network established as one of the major sources for internet viruses and worms. On
the following pages, I will evaluate the opportunities and challenges of monitoring the Gnutella
network from the technical, commercial and social point of view. I describe the implementation
of GnutellaWatch which is a easy-to-use Java program suitable even for personnel without a
broad understanding of network technology.

1 Introduction
Peer-to-peer networks, often abbreviated P2P, gained
a lot of popularity over the past years. In the fall of
1999, the program Napster [URL:Napster] became
available and immediately started a worldwide rush
for file sharing. Originally written by a just single
person, it turned out to be one of the success stories
of the Internet boom. Its massive popularity reaches
its peak in February 2001 when about 13.6 million
user ran Napster on their computers.

The idea of file sharing is to set up a virtual net-
work over the internet which can be crawled by a
dedicated search engine. Once a file is found, it can
be transferred from one user to another user, hence
the name peer-to-peer. The major difference to clas-
sical client-server models like the file transfer proto-
col (FTP) is that there are no dedicated servers any-
more. Each client now acts as a server, too.

Typical peer-to-peer network are quite vivid and
change their structure all the time. Well-liked files
are often available from multiple sources. In a per-
fect scenario, the download speed is only limited by
the downloading node. However, this is almost never
true but usually peer-to-peer networks under heavy
load outperform web server under heavy load while
allowing more users, too.

Especially freshly released downloads, like the

major Linux distribution are usually handled better
by peer-to-peer networks than by traditional archi-
tectures. For example, the latest Knoppix 3.4 release,
[URL:Knoppix] a stunning 700 MByte giant, could
only be distributed by file sharing tools in the first
days since all mirrors worldwide were poorly avail-
able. The requested download bandwidth could not
be satisfied by more than 50 servers, some of them
even equipped with sophisticated load balancers.

There is one major drawback of peer-to-peer net-
works: a very high percentage of the shared files in-
fringe copyright restrictions. The music industry re-
ported impressive losses due to MP3 sharing which
caused declined CD sales.

Gnutella (spoken with a silent “g”) was released
on March 14, 2000 by Justin Frankel, the main pro-
grammer of the famous WinAmp MP3 player
[URL:Winamp]. Even though his company Nullsoft
immediately closed down the download site, the pro-
gram spread fast among the internet community.
Gnutella is truly decentralized since the included
search engine does not rely on dedicated servers.
This is important since Napster was sued because the
company offered dedicated search servers. In the
end, Napster was closed down in July 2001.

Gnutella bases on a lean network protocol quite
similar to the Hypertext Transfer Protocol (HTTP).
The nodes share IP addresses of parts of the net-
works and satisfy/forward search queries. A node
can be set up within a few seconds on almost every
computer. The configuration is very flexible and re-
markably helps to prevent the program from being
detected by common network scan tools.

In the following chapters I will shortly describe
the Gnutella protocol and how a program can hook

This paper was written as part of the lecture Intelligent
Agents at the University of Technology, Sydney, in 2004.
The author can be contacted via email:
stephan.brumme@hpi.uni-potsdam.de,
stephan.brumme@uts.edu.au, or
info@stephan-brumme.com

- 2 -

itself into the network. Thus one is able collect many
IP addresses of various active clients. I will explain
how so-called web caches help to enter the network,
too.

Depending on the country, Internet Service Pro-
viders may be held responsible for not preventing
copyright infringements as they are done by almost
every file sharing user. In addition, most companies
have to pay a lot of money for the used network
bandwidth which is drastically increased by peer-to-
peer networks.

2 GnutellaWatch

2.1 Requirements
Before going into the details of the Gnutella net-
work, I give a short overview of the intelligent agent
I developed. I always had a user in mind who does
not necessarily possess the knowledge of a network
administrator. He does not need to know the details
of protocols. A limited understanding of the way
how the internet works is sufficient.

GnutellaWatch runs on every computer support-
ing Java 1.4 [URL:Java]. Without any modifications
to the source code or recompilation, the same byte
code can be executed on Windows machines as well
on the vast variety of UNIX based operating sys-
tems.

2.2 Usage
After starting the program, the user will see the

Control Centre. Here he can start the Bootstrapping
process that is required to join the Gnutella network.
Furthermore, the user has the ability to scan a certain
range of IP addresses (for example the network of
his company) and request detailed e-mails for each
detected Gnutella client.

Some runtime statistics show the size of the
crawled network. My program is pretty fast and al-
lows even on a low-end 100 KBit connection to re-
trieve about 800 unique IPs in just under two min-
utes.

Two tabs called “Clients” and “Webcaches” offer
an in-depth examination of the known network.
Based on the IP, my program determines the country
of the remote nodes and performs a domain lookup
to get a description of the originating network.

Very interesting is a feature that retrieves the cor-
responding WhoIS database entries when double-
clicked on an table row. An entry exists for each
domain worldwide and contains a lot of information
about the administrator: usually including his e-mail
address and often even his office telephone numbers.
If you found a suspicious IP, why not give the re-
sponsible administrator a call ?

Figure 1: Control Centre

Figure 2: Detected clients

Figure 3: WhoIS information

- 3 -

3 Agent Technology
Even though they are some smart and useful applica-
tions based on peer-to-peer networks, they are now
seen as a big danger because of copyright infringe-
ments. My program GnutellaWatch employs internet
agent technology [Debenham04] to discover active
Gnutella clients.

It intelligently choses between two underlying
discovery protocols and can detect improper protocol
implementations.

The environment of GnutellaWatch is quite huge:
it is the whole internet ! My program has to carefully
select interesting parts without harming innocent
computers.

In order to find an active Gnutella client, one
could write a brute-force program. A Gnutella client
can potentially found on any free port of an IP. Since
they are about 216 ports defined, even a medium
sized B-class subnet would require 232 port scans. If
that brute-force solution would be able to perform
100 port scans per second – which is very fast – it
would need 1.5 years. My program cannot guarantee
to find all Gnutella clients but is much faster and
friendlier to its environment.

GnutellaWatch tries to fight the Gnutella net-
work, not to support it. Therefore, it behaves passive
to other clients and operates in “stealth mode”. It
only listens to current network activity without con-
tributing to potentially illegal actions.

The ever-changing shape of the Gnutella network
is responsible for inevitable errors. If a remote server
was misinterpreted as a part of the Gnutella network,
the program will stop from bothering it.

There is no need for configuration or ongoing su-
pervision: the program consists of just two files that
can be copied to a new location and run everywhere
you find a Java Virtual Machine and internet access.
Firewalls are not a major problem. Except for re-
sources issues, GnutellaWatch could run forever
without ever needing any interacting from the user. It
can send its reports via e-mail. So it is possible to
start GnutellaWatch on a computer you rarely access
and only read all status reports to actively fight the
Gnutella network.

My program is not exactly mobile but since of its
as-simple-as-possible deployment approach I would
like to call it “virtually mobile”.

4 The Gnutella Protocol

4.1 Bootstrapping
Whenever a Gnutella client is started, it does not

know which other nodes are currently available on
the internet. Therefore the first step is to find at least
one active node. This process is called bootstrapping.

There are no centralized servers available to help
during this process. If a client would perform a dumb
trial-and-error bootstrapping, for example pinging all
computers whether they run Gnutella or not, then
this would infer an enormous waste of resources.

Two basic bootstrapping algorithms established: a
client should store all known nodes of the last ses-
sion and on the next start ping all these IPs. Since
file sharing tools often run in the background and
modern computers are almost never switched off,
there is a good chance to find a valid node. More-
over, if incidentally the computer connected via an
IP changed (quite common for dial-up internet ac-
cess) but the new computer runs Gnutella, too, then
bootstrapping works as well since it does not matter
which Gnutella client is found. They all behave the
same.

The second bootstrapping algorithm is more reli-
able and works with so-called “web caches”
[URL:GWebCache]. They are ordinary web sites
powered by specialized PHP, ASP or Perl scripts.
All they do is to return some random valid IPs of
clients they recently registered. Web sites change
every day – therefore the web caches know each
other and provide URLs of other web caches, too. A
good Gnutella client stores all web caches of the last
session in the same manner it does for IPs.

Basically, web caches are a second network lay-
ered above the Gnutella network. They are pretty
generic since they just know some IPs and URLs. It
should be fairly easy to set up web caches for one of
the other major file sharing networks like Kazaa
[URL:Kazaa] which was developed by the Sydney-
based company Sharman Networks.

Gnutella web caches follow the gwebcache stan-
dard [URL:GWebCache]. This standard is not offi-
cially recognized but implemented by a dozen of
open source projects. A search for gwebcache on
Google returns about 1,000 links which either point
to a web cache or to a developer site. During my
tests I consistently found more than 50 active web
caches.

- 4 -

An ordinary web browser is sufficient to view
such a web cache as is shown in figure 4.

4.2 Friend Of A Friend
Once we got a connection to at least one node of

the Gnutella network, we can ask that node to give
us the addresses of some of the nodes it is connected
to. Then we ask these new nodes again for the same
information and so on. This algorithm is sometimes
called “Friend of a friend” and proves to gain a
pretty fast access to a huge user base.

An example: if a clients know 7 other nodes,
these in turn known 7 new nodes then we already
know 7+7*7=56 nodes. If we ask the most recent
7*7 nodes we will probably get 7*7*7=343 nodes.
After only six steps we have identified about
100,000 nodes !

Unfortunately, reality always differs from this
theoretical example. Even though most nodes can
actually return 7 other nodes, many of the nodes
overlap. A node X we got by asking node Y will cer-
tainly return node X. It is not unusual to get invalid
IP – some nodes even reject to deliver addresses of
their friends.

4.3 Gnutella Commands

The communication protocol of Gnutella is very
much alike the HTTP protocol. Indeed, the download
of files is pure HTTP/1.1 while pings and queries
(explained later) differ a bit.

I will describe only the more modern Gnutella 0.6
protocol [URL:GnutellaRFC] understood by more
than 99% of all Gnutella clients. Don’t be confused
by Gnutella2 which you may find on the internet.

That protocol is completely different and the whole
Gnutella community is upset about the misuse of the
name “Gnutella” for marketing purposes of an in-
compatible program [URL:Shareaza].

4.3.1 Hand-Shaking
To establish a connection, the requesting node

has to send:

GNUTELLA CONNECT/0.6<cr><lf>

When the attempt to connect was successful, a re-
sponse according to this pattern is generated:

GNUTELLA/0.6 200 <string><cr><lf>

String is usually two letters: OK.
By now, nodes add several header fields to these

one-line commands. A more typical hand-shake
therefore looks like this:

[Request]

GNUTELLA CONNECT/0.6<cr><lf>
User-Agent: GnutellaWatch/1.0<cr><lf>
Ultra-Peer: False<cr><lf>
Pong-Caching: 0.1<cr><lf>

[Response]

GNUTELLA/0.6 200 OK<cr><lf>
User-Agent: LimeWire/1.0<cr><lf>
X-Try: 141.2.89.3:6436,
 212.43.98.71:6436<cr><lf>

As one can see, most nodes expose their name and
some friends during the hand-shake.

4.3.2 Standard Message Architecture
Now that we got an established connection, we can
send binary messages built according to figure 5.

The message ID should be globally unique. There
are many libraries available to generate such as
number often referred to as GUID.

The type can be:
- ping (0x00),
- pong (0x01),
- bye (0x02),
- push (0x40),
- query (0x80),
- query hit (0x81)

4.3.3 Ping Message
This message only checks whether a client is still
connected to the network. It contains no data and
should not be confused with the ping command of
most operating systems.

Figure 4: A browser retrieving a web cache

Message ID Type Time To Live Hops Data Length Data
16 bytes 1 byte 1 byte 1 byte 4 bytes varying

Figure 5: Message Architecture

- 5 -

4.3.4 Pong Message
This message is only sent as a response to a ping
message. It carries some information about the num-
ber and size of shared files.

4.3.5 Bye Message
This message indicates that the client will soon leave
the network. It carries no further data and can be
omitted.

4.3.6 Push Message
This message sends (pushes) a file. It is somehow
redundant since file transfer usually bases on HTTP.
Most clients omit this message.

4.3.7 Query
This message asks for a certain file. Beside the file
name, a query also contains some transfer speed re-
strictions. For example, it may ask for at least 10
KByte/sec. The message size is in most cases below
200 bytes.

4.3.8 Query Hit
This message returns one or more sources for a file
requested by a query. Most important, it carries the
IP addresses of all source node, their connection
speed and a file identifier. This identifier is used
when actually requesting the file via HTTP.

4.4 Problems

4.4.1 Bandwidth Issues
The Gnutella heavily employs pings and queries.
Especially queries can cause a huge amount of traf-
fic: if a node does have a file that was requested, it
forwards the queries to all of his friends. For rarely
found files there is an exponential growth according
to the nodes the query passes – clearly a bottleneck.

Each message therefore contains a time to live
field. It is decreased by one every time a query is
forwarded. Once it reaches zero, the query is dis-
carded and removed from the network. A typical ini-
tial value for time to live is 7.

In addition to decreasing the time to live, a second
header field called hops is increased by one and
therefore gives us some knowledge about the nodes
the message already passed. The idea behind this
concept is to prevent clients from using too high ini-
tial time to live values (which may slightly increase
the query hit probability but causes significantly
more traffic): the sum of time to live and hops is al-
ways constant. If this sum is higher than a certain

threshold then a node is allowed to decrease the time
to live until the sum is in a valid range.

Messages are quite short. Besides some protocol
extensions, only pong, query and query hit contain
some data. In most cases, their size is below 300
bytes. If the size exceeds 4 Kbytes, a node can re-
move the message.

4.4.2 Too Many Connections
Gnutella is “connection-greedy”. While implement-
ing my program, I got a lot of “connection refused”
responses in the hand-shake.

I still do not know whether the nodes actually suf-
fer from too many connections or only want to save
bandwidth and protect their privacy.

4.4.3 Trusting Nodes
One can never rely on the messages transferred over
the Gnutella network. Some commercial clients try
to inject spam in the network.

It was told that a few modified nodes tried to ex-
ploit security holes in some open-source clients.
Since the code of many Gnutella clients is publicly
available, found leaks can lead to severe damages:

- remote clients can gain local root access
- insecure clients may be misused to send spam

or, even worse, worms
- keylogger etc. can reveal information that

should have kept secret
- … and many more !
Right now, there is no solution for these problems

because of the simple text-based protocol that works
without any encryption. Nevertheless, the big major-
ity of clients can be trusted.

4.4.4 Invalid nodes
The bye message is not always properly used. Some
clients leave the networks without notifying their
friends. The ping message is sent periodically to up-
date the availability of all friends but cannot be sent
too often since that would incur a substantial in-
crease of network traffic.

In consequence, a node only knows which of its
friends were online some time ago. When asked by a
new node for its friends, a node may returns ad-
dresses of friends that are no longer online.

Depending on the timespan between two pings, I
observed a medium up to high percentage of invalid
addresses.

The problem is even worse for web caches. They
usually allow updates once an hour to conserve
bandwidth but many clients are online only for a
couple of minutes.

- 6 -

4.5 Advanced Topics

4.5.1 File Swarming
A typical audio CD compressed in the widespread
MP3 file format occupies 60 MByte while an aver-
age DivX encoded movie requires up to 1 GByte.

Downloading a file just from a single source
would limit the download speed to the upload speed
of the source. Today, asymmetric DSL connections
have a low upload speed which is not practical.

If we rely on a download from one source than
we have to ensure that it is online for the whole
download. Especially for large files (often several
Mbytes) this cannot be guaranteed.

File swarming helps to eliminate these problems:
part of the HTTP protocol is a partial download.
Gnutella almost always requests certain blocks and
joins them locally. It is no problem to download the
last few bytes of a file first and the first bytes of that
file last. Parallel downloads from multiple sources
are handled without major worries.

4.5.2 Extensions
Clients like LimeWire [URL:LimeWire] or Bear-
Share [URL:BearShare] introduced new extensions
to the protocol to enhance bootstrapping and queries.
Not all extensions are widely accepted but some
promise real improvements, though: high-speed con-
nected Ultrapeers bundle messages, clients cache
queries and file magnets provide a web interface
fully replacing the need of a Gnutella client.

Up to now, there is no new standard and even
Gnutella version 0.6, as used in this paper, is still a
draft [URL:GnutellaRFC].

5 Foundations of GnutellaWatch

5.1 Bootstrapping
I wrote code to access web caches as well as clients
in order to perform bootstrapping.

A web cache returns a text list of URLs of the
web caches it knows, one per line. The same holds
true for client IPs but they have to be fully qualified
with a port number, usually 6436.

To get the web cache URLs, the web cache has to
be called with a parameter urlfile=1. In figure 4, the
full URL to retrieve the URLs of known web caches
was:
http://gwebcache1.limewire.com/gwebcache/cgi-
bin/perlgcache.cgi?urlfile=1 (URL has been split
into two lines to fit the layout of this paper). Asking

another web cache for a list of clients is as simple as
this: http://www.xolox.nl/gwebcache/?hostfile=1.

If something goes wrong, the web cache has re-
spond ERROR. I often observed ordinary HTML
pages so I verify each line whether it is a standard-
conforming URL and discard all lines that fail this
simple test.

In my Java code, the classes HttpURLConnec-
tion and URL are basically all I need to perform
web cache based boot strapping.

The class is called WebCacheSpider and proc-
esses one web cache at a time returning all new web
caches and nodes found.

5.2 Requesting Node IPs
In the last chapter on bootstrapping I already ex-
plained how to get client or node IP from a web
cache.

While showing the process of hand-shaking I
gave an example of inserted special header fields.
The fields X-Try and X-Try-Ultrapeer are
supported by most Gnutella clients and give a
comma-separated list of all friends of a node.

The dedicated Java class serving that purpose is
called ClientSpider and processes one Gnutella
client at a time returning all new nodes found - ex-
actly the same way as WebCacheSpider.

5.3 Further IP information

5.3.1 Reverse DNS Lookup
Modern DNS servers allow to resolve an IP adderss
and return the main textual representation: a URL.
The process may give invalid results for shared host-
ing but usually works quite reliable.

Java’s nice internet library reduce the code to
make a reverse DNS lookup to the shortest solution
possible: InetAddress’ method getHostName
gives us the desired URL as a String.

5.3.2 GeoIP
Sometimes a reverse DNS lookup fails. Furthermore,
my program generates a massive DNS traffic since it
sometimes sends 10 queries per seconds. As stated
before, for shared hosting there is no unique reverse
DNS lookup.

A faster and locally available solution is GeoIP
developed by MaxMind LLC [URL:GeoIP]. Even
though its full version costs some money, there is a
basic database and Java source code available for
free.

- 7 -

The GeoIP library gives me information about the
IP’s country of origin. This is especially worthy for
international domains like com, net or org.

5.3.3 WhoIS
The WhoIS protocol was designed in the early days
of the internet [Whois85] to retrieve information
about the administrator of a domain.

Since he actually owns the domain, he is respon-
sible for the whole contents of his publicly accessi-
ble server.

Depending on the country, the underlying data-
base contains the postal address, the e-mail address
and the telephone number of the administrator. An
example is given in figure 3.

The protocol itself is very easy: just send the do-
main you would like to get information about to a
responsible WhoIS server on port 43. Then the
server will respond with the desired contents. Unfor-
tunately, no true standard exists for the format of the
result.

There are two pitfalls: the domain name has to be
reversed. For example www.stephan-brumme.com
has to be changed to com.stephan-brumme.www.
The other problem: WhoIS is generally only avail-
able for second-level domain. The exemplary do-
main has to be reduced to com.stephan-brumme.
Some exceptions are countries like Australia that
have predefined second-level domains like edu.au. In
these countries, WhoIS will work for third-level do-
mains like uts.edu.au (or reversed: au.edu.uts) as
well.

There are various ways to determine the respon-
sible WhoIS server. Often they can be found at
whois.nic.[insert country domain here]. Again, no
standard defines this, it is only a common observa-
tion. I decided to send all (!) my WhoIS requests to
whois.geektools.com [URL:GeekTools]. They run a
frequently updated database, automatically select the
responsible WhoIS server and send me all I need.
Since this service is for free, geektools.com restricts
the service to 50 requests per IP per day.

I encapsulated the WhoIS request in the class
WhoIs. It is straightforward Socket based code
and thanks to Java’s internet functionality short in
length.

6 GnutellaWatch Architecture

6.1 Third Party Libraries
An agent should be small in size since it is typically
run only for a short timespan. Easy and seamless
integration in new environment is very important for
agents.

I decided implement the involved agent technol-
ogy by writing the code on my own. This way I best
learn how to construct an agent and get the best pos-
sible understanding of the main issues.

Moreover, third party libraries not always fit the
needs and have to be adapted or wrapped. This leads
to an exhausting code bloat that I tried to avoid.

Nevertheless, I used the GeoIP [URL:GeoIP] li-
brary to lookup the country of an IP. The code really
worked “as is” and perfectly suited my needs: it of-
fers all the features that I need – not more.

I do not like the look of Java applications. They
somehow do not fit into the modern user interfaces
of Windows, MacOS Aqua or KDE. A more pleasant
user interface is provided by the open source
Kunststoff project [URL:Kunststoff]. They add a
layer on top of Java’s Swing Metal look’n’feel and
notably improve the overall experience. In my past
semesters I had some lectures on the design of user
interfaces and discovered how seldom programmers
have the common user in mind. Especially computer
scientists tend to forget about reasonable usability.
Fortunately, the internet and its web designers revo-
lutionized the way how we treat human machine in-
teraction.

6.2 Multithreading
Nowadays’ internet program are usually limited by
the offered bandwidth and the speed of remote com-
puter. The locally available CPU power becomes
more and more negligible; however memory is still a
potential bottleneck.

Most web caches and nodes need between 0.5 and
2 seconds to respond to my requests. This may be
caused by my current location: Australia is quite far
away from the big file sharing networks in Europe
and America.

It is not feasible to process only one request at a
time. Instead, multiple requests can be performed to
significantly increase the performance of Gnutella-
Watch. Thus, I more efficiently utilize available re-
sources and, most important, save much time [Chris-
topher00, Lewis00].

- 8 -

Multithreading always implies synchronization
issues. I handle them by so-called managers. For all
object of the class WebCacheSpider, there is a
single WebCacheManager. For all objects of the
class ClientSpider, there is a single Client-
Manager [Heaton02].

6.3 Spiders And Manager
The WebCacheSpider and the ClientSpider
basically differ in the protocol they understand. Be-
cause of many shared features, both implement the
interface ISpider. A similar relationship exists
between WebCacheManager and ClientMan-
ager: they derive from InfoManager.

The job of a manager is to spawn multiple spiders
and keep track of the workload by supervising a sys-
tem of queues (see below).

Almost all methods of the managers are declared
synchronized to prevent one spider interrupting an-
other while performing queue updates. If I would
omit it, the queues may be corrupted which could
crash the whole program.

6.4 Queues
There a five states for each address (no matter
whether web cache address or client IP): waiting,
running, complete, error and try-again [Heaton02].

Initially, an address represented by the IInfo
interface is set to be in the waiting state. This is done
by pushing it to the waiting queue. When a spider is
asking for work, it removes one address from the
waiting queues and declares it as running by adding
it to the running queue. When done, the address is,
depending on the result of the spider, either moved
to the complete, error or try-again state.

I called these data structures queues because a
new entry is always added to the end while remov-

ing always occurs at the head. In computer science
terminology, these queues are strictly speaking FIFO
lists.

For convenience reasons, a separate list keeps
track of all IInfo objects. This simplifies the GUI
programming a bit.

6.5 Namespaces
I like the concept of namespaces to organize a source
code tree and avoid name clashes. In the figure
about, you see the main namespaces. The packages
(Java’s name for namespaces) are only loosely cou-
pled. GeoIP and Kunststoff are third-party packages
and used “as is”.

6.6 User Interface
An agent is defined as an entity that does something
on behalf of someone. GnutellaWatch spiders the
GnutellaWatch on behalf of an administrator, that
means a human being.

Figure 6: An Enhanced User Interface

waiting running

try again

complete

error

Figure 7: Queue State Chart

Figure 8: Packages

- 9 -

All interaction between humans and computers
has to be adapted to the needs and requirements of
the human not the computer. In the early ages of
computer science, often the inverse was true.

The change over the last years is best symbolized
by the move from command-line interface to graphi-
cal user interfaces.

But not all graphical user interfaces are good in-
terfaces: colours should be used more carefully.
Sometimes, more colours enhance the user interface;
sometimes you should reduce the number of in-
volved colours.

Working with large tables can be annoying: when
reading a row from left to right, many users inciden-
tally slip. A subtle background differentiating odd
from even row helps a lot [Goldstein01].

Users often want immediate feedback or try to
explode by double-clicking something interesting.
My tables support this and even show small tooltips
while the mouse pointer is hovering above a certain
row. Last but not least, all columns can be sorting in
an ascending order [Linden02].

6.7 Software Quality
Excellent support of exceptions is the most out-
standing feature of Java. I catch them to recover
from “exceptional” situations and bring the program
back to a normal state.

The nature of the internet implies many excep-
tions: URLs may be spelt incorrectly, connections
may suddenly be interrupted and many more.

It is hard to understand the current state of a mul-
tithreaded program. While debugging GnutellaWatch
I often had severe problems understanding the cause
of some bugs. Therefore I learnt how to use the Java
Logging Library – a major step in software quality
since now I can trace the program paths.

Documentation is often underestimated. Espe-
cially for one-man-projects like GnutellaWatch one
finds a lack of good documentation. To me, docu-
mentation is not only writing a paper (the one you
are currently reading) but also source comments like
JavaDoc and understandable graphical descriptions.
UML diagrams often tend to be over-stressed. They
can be quite useful but they have to be stripped down
to the essential core – most UML evangelists do not
realize this. Nevertheless, I have some UML dia-
grams to explain the basic relationships of Gnutel-
laWatch. According to theories of cognition sci-
ences, I try to show at most seven elements in a sin-
gle diagram.

7 Future Improvements
Nobody is perfect. GnutellaWatch is a ready-to-use
solution proudly stating “version 1.0”. This is true, is
a fully functional release without any major prob-
lems.

GnutellaWatch is not perfect in a way that it ide-
ally should be able to fulfil its job faster, more accu-
rate and, most important, easier.

- One of the issues to be solved in a next re-
lease is persistency. Right now, Gnutella-
Watch does not save its current state to disc
and requires a lot of redundant crawling each
time. A XML serializer would be preferred.

- I did not implement code to actually send
and receive Gnutella Messages – all I do is
the hand-shake. Even though the hand-shake
is sufficient to obtain IPs, evaluating the
messages could help to analyse whether a
user shares illegal contents over the internet.

- The usage of resources is not optimal. In ad-
dition to Java’s bad performance, Gnutella-
Watch may run quite slow even on fast com-
puters.

- Traffic shaping could allow a better control
about the network traffic generated by my
program. This is important when Gnutella-
Watch is intended to run for a long term.

- Some constants like the number of threads
are hard-coded. They should configurable in
the next release.

- GnutellaWatch should be more personalized.
This means that the user should be able to
adapt the look’n’feel as well as the search
options to his own needs.

- My program is unable to understand the re-
cently proposed GWebCache2 protocol. It
gives better performance and control for web
caches.

- Basically, the protocol of competing file
sharing networks like FastTrack (used in Ka-
zaa), eDonkey and Kademlia are be spidered,
too. Some of them are documented on the
internet. My open architecture should allow
implementing these protocols without major
hassles.

- 10 -

Now I would like to talk about topics program-
mers often deny to mention:

- I completely underestimated the size of the
project. Next time I need a better planning to
avoid hectic work in the last hours before the
final deadline.

- No source control system was used. Modern
Java IDEs support a wide variety, like CVS
and Subversion. They help to keep track of
changes and bugs.

- There is no help system. A proper user inter-
face must have a (context-sensitive) help
system.

8 References

8.1 Literature
[Christoper00] Thomas W. Christopher, George K.

Thiruvathukal, High-Performance Java Platform
Computing, Sun Microsystems Press, Palo Alto,
2000

[Debenham04] John Debenham, Lecture 32530
Building Intelligent Agents, held at the University
of Technolgy, Sydney, autumn semester 2004

[Goldstein01] Mitch Goldstein, Hardcore JFC,
Cambridge University Press, Cambridge, 2001

[Heaton02] Jeff Heaton, Programming Spiders, Bots
and Aggregators in Java, Sybex, San Francisco,
2002

[Jones03] M. Tim Jones, AI Application Program-
ming, Charles River Media, Hingham, 2003

[Lewis00] Bil Lewis, Daniel J. Berg, Multithreaded
Programming with Java Technology, Sun Micro-
systems Press, Palo Alto, 2000

[Linden02] Peter van der Linden, Just Java 2, 5th
edition, Sun Microsystems Press, Palo Alto, 2002

[Whois85] K. Harrenstien, M. Stahl, E. Feinler, Nic-
name/Whois, RFC 954, 1985

8.2 Online Material
[URL:BearShare]

www.bearshare.com

[URL:GeekTools]
www.geektools.com

[URL:GeoIP]
www.maxmind.com

[URL:GnutellaRFC]
http://rfc-gnutella.sourceforge.net

[URL:GWebCache]
www.gnucleus.com/gwebcache/

[URL:Java]
java.sun.com

[URL:Kazaa]
www.kazaa.com

[URL:Knoppix]
www.knoppix.net

[URL:Kunststoff]
www.incors.org

[URL:LimeWire]
www.limewire.com

[URL:Napster]
www.napster.com,
en.wikipedia.org/wiki/Napster

[URL:Shareaza]
www.shareaza.com

[URL:Winamp]
www.winamp.com

